Block A, Li G, Zheng Q F, Alfano J R. 2008. Phytopathogen type III effector weaponry and their plant targets. Current Opinion in Plant Biology, 11, 396–403.Böhnert H U, Fudal I, Dioh W, Tharreau D, Notteghem J L, Lebrun M H. 2004. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. The Plant Cell, 16, 2499–2513.Chen C, Lian B, Hu J, Zhai H, Wang X, Venu R C, Liu E, Wang Z, Chen M, Wang B, Wang G L, Wang Z, Mitchell T K. 2013. Genome comparison of two Magnaporthe oryzae field isolates reveals genome variations and potential virulence effectors. BMC Genomics, 14, 1–12.Chen S, Songkumarn P, Liu J, Wang G L. 2009. A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiology, 150, 1111–1121.Collmer A, Alfano J R. 2000. Pseudomonas syringae Hrp type III secretion system and effector proteins. Proceedings of the National Academy of Sciences of the United States of America, 97, 8770–8777.Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan H, Read N D, Lee Y H, Carbone I, Brown D, Oh Y Y, Donofrio N, Jeong J S, Soanes D M, Djonovic S, Kolomiets E, et al. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature International Weekly Journal of Science, 434, 980–986.Dong Y, Li Y, Zhao M, Jing M, Liu X, Liu M, Guo X, Zhang X, Chen Y, Liu Y, Liu Y, Ye W, Zhang H, Wang Y, Zheng X, Wang P, Zhang Z. 2015. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLoS Pathogens, 11, e1004801.Dou D, Kale S D, Wang X, Chen Y, Wang Q, Wang X, Jiang R H, Arredondo F D, Anderson R G, Thakur P B, McDowell J M, Wang Y, Tyler B M. 2008. Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. The Plant Cell, 20, 1118–1133.Ebbole D J. 2007. Magnaporthe as a model for understanding host-pathogen interactions. Phytopathology, 45, 437–456.Hogenhout S A, Van der Hoorn R A, Terauchi R, Kamoun S. 2009. Emerging concepts in effector biology of plant-associated organisms. Molecular Plant-Microbe Interactions, 22, 115–122.Hu J, Chen C, Peever T, Dang H, Lawrence C, Mitchell T. 2012. Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics, 13, 171–196.Jantasuriyarat C, Gowda M, Haller K, Hatfield J, Lu G, Stahlberg E, Zhou B, Li H, Kim H, Yu Y, Dean R A, Wing R A, Soderlund C, Wang G L. 2010. Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiology, 138, 105–115.Jones, Jonathan D G, Jeffery L D. 2006. The plant immune system. Nature, 444, 323–329.Kang S, Lebrum M H, Farrall L, Valent B. 2001. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Molecular Plant-Microbe Interactions, 14, 671–674.Kang S, Sweigard J A, Valent B. 1995. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 8, 939–948.Kim S, Park J, Park S Y, Mitchell T K, Lee Y H. 2010. Identification and analysis of in planta expressed genes of Magnaporthe oryzae. BMC Genomics, 11, 635–643.Kumar J, Nelson R J, Zeigler R S. 1999. Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas. Genetics, 152, 971–984.Kurtz S, Phillippy A, Delcher A L, Smoot M, Shumway M, Antonescu C, Salzberg S L. 2004. Versatile and open software for comparing large genomes. Genome Biology, 5, 1–9.Leung H, Borromeo E S, Bernardo M A, Notteghem J L. 1988. Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology, 78, 1227–1233.Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B. 2009. The Magnaporthe oryzae avirulence gene AVRPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Molecular Plant-microbe Interactions, 22, 411–420.Liu W, Liu J, Ning Y, Ding B, Wang X, Wang Z, Wang G L. 2013. Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Molecular Plant, 6, 605–620.Ma L J, Does H C, Borkovich K A, Coleman J J, Daboussi M J, Di Pietro A. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464, 367–373.Ma L, Lukasik E, Gawehns F, Takken F L. 2012. The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana Leaves. Methods in Molecular Biology, 835, 61–74.Miki S, Matsui K, Kito H, Otsuka K, Ashizawa T, Yasuda N, Fukiya S, Sato J, Hirayae K, Fujita Y, Nakajima T, Tomita F, Sone T. 2009. Molecular cloning and characterization of the AVR-Pia locus from a Japanese field isolate of Magnaporthe oryzae. Molecular Plant Pathology, 10, 361–374.Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B. 2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. The Plant Cell, 12, 2019–2032.Ray S, Singh P K, Gupta D K, Mahato A K, Sarkar C, Rathour R, Singh N K, Sharma T R. 2016. Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, pi54. Frontiers in Plant Science, 7, 1140.Rehmeyer C, Li W, Kusaba M, Kim Y S, Brown D, Staben C, Dean R, Farman M. 2006. Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Research, 34, 4685–4701.Ribot C, Césari S, Abidi I, Chalvon V, Bournaud C, Vallet J, Lebrun M H, Morel J B, Kroj T. 2013. The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery. The Plant Journal, 74, 1–12.Smith D R, Lee R W. 2008. Nucleotide diversity in the mitochondrial and nuclear compartments of Chlamydomonas reinhardtii: Investigating the origins of genome architecture. BMC Evolutionary Biology, 8, 156.Sonnhammer E L, von Heijne G, Krogh A. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. International Conference on Intelligent Systems for Molecular Biology, 6, 175–182.Talbot N J. 2003. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Microbiology, 57, 177–202.Wessler S R. 2006. Transposable elements and the evolution of eukaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America, 103, 17600–17601.Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, Ponaya A, Xiao G, Li J, Li C, Song M Y, Cumagun C J, Deng Q, Lu G, Jeon J S, Naqvi N I, Zhou B. 2015. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AVRPi9 that triggers Pi9-mediated blast resistance in rice. New Phytologist, 206, 1463–1475.Xue M, Yang J, Li Z, Hu S, Yao N, Dean R A, Zhao W, Shen M, Zhang H, Li C, Liu L, Cao L, Xu X, Xing Y, Hsiang T, Zhang Z, Xu J R, Peng Y L. 2012. Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genetics, 8, e1002869.Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R. 2009. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. The Plant Cell, 21, 1573–1591.Zhang S, Wang L, Wu W, He L, Yang X, Pan Q. 2015. Function and evolution of Magnaporthe oryzae avirulence gene AVRPib responding to the rice blast resistance gene Pib. Scientific Reports, 5, 11642. |