Bhatti I H, Ahmad R, Jabbar A, Nazir M S, Mahmood T. 2006. Competitive behaviour of component crops in different sesame-legume intercropping systems. International Journal of Agriculture and Biology, 8, 165–167.Callaway R M, Walker L R. 1997. Competition and facilition: A synthetic approach to interactions in plant communities. Ecology, 78, 1958–1965.Christian C S, Grey S G. 1941. Interplant competition in mixed wheat populations and its relation to single plant selection. Journal of Council for Science and Industrial Research, 14, 59–68. Dhima K, Lithourgidis A, Vasilakoglou I, Dordas C. 2007. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research, 100, 249–256.Donald C M. 1968. The breeding of crop ideotype. Euphytica, 17, 385–403.Donald C M. 1981. Competitive plants, communal plants, and yield in wheat crops. In: Evans L T, Peacock W J, eds., Wheat Science - Today and Tomorrow. Cambridge University Press, Cambridge. pp. 223–247.Dong L L, Wei C H, Ma X J, Zhang R. 2007. The relationship between competitive ability and productive performance of spring wheat cultivars. Acta Ecologica Sinica, 27, 4204–4208. (in Chinese)Du J Q, Wei P P, Yuan Z Q, Ma Y J, Zhang R. 2011. Effects of water and fertilization on relationship between competitive ability and seed yield of modern and old spring wheat cultivars. Acta Ecologica Sinica, 31, 2501–2508. (in Chinese)Echarte L, Andrade F H. 2003. Harvest index stability of Argentinean maize hybrids released between 1965 and 1993. Field Crops Research, 82, 1–12.Evans L T. 1981. Yield improvement in wheat: Empirical or analytical. In: Evans L T, Peacock W J, eds., Wheat Science - Today and Tomorrow. Cambridge University Press, Cambridge, UK. pp. 203–222.Fang Y, Liu L, Xu B C, Li F M. 2011. The relationship between competitive ability and yield stability in an older ad modern winter wheat cultivar. Plant and Soil, 347, 7–23.Fasoula D A. 1990. Correlations between auto-, allo- and nilcompetitionand their implications in plant breeding. Euphytica, 50, 57–62.Fischer A J, Ramirez H, Gibson K D, Pinheiro B D S. 2001. Competitiveness of semidwarf upland rice cultivars against palisadegrass (Brachiaria brizantha) and signalgrass (Brachiaria decumbens). Agronomy Journal, 93, 967–973.Garrity D P, Movillon M, Moody K. 1992. Differential weed suppression ability in upland rice cultivars. Agronomy Journal, 84, 586–591.Gibson K D, Fischer A J, Foin T C, Hill J E. 2003. Crop traits related to weed suppression in water-seeded rice (Oryza sativa L.). Weed Science, 51, 87–93.Hucl P. 1998. Response to weed control by four spring wheat genotypes differing in competitive ability. Canadian Journal of Plant Science, 78, 171–173.Jordan N. 1993. Prospects for weed control through crop interference. Ecological Applications, 3, 84–91.Keddy P A. 2012. Competition in plant communities. In: Gibson D, ed., Ecology. Oxford University Press, New York. Lemerle D, Gill G S, Murphy C E, Walker S R, Cousens R D, Mokhtari S, Peltzer S J, Coleman R, Luckett D J. 2011. Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Australian Journal of Plant Science, 52, 527–548.Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z. 2001. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Research, 71, 123–137.Lithourgidis A S, Vlachostergios D N, Dordas C A, Damalas C A. 2011. Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems. European Journal of Agronomy, 34, 287–294.Mariotti M, Masoni A, Ercoli L, Arduini L. 2009. Above- and below-ground competition between barely, wheat, lupin and vench in cereal and legume intercropping system. Grass and Forage Science, 64, 401–412.Murphy K M, Dawson J C, Jones S S. 2008. Relationship among phenotypic growth traits, yield and weed suppression in spring wheat landraces and modern cultivars. Field Crops Research, 105, 107–115.Ni H, Moody K, Robles R P, Paller E C, Lales J S. 2000. Oryza sativa plant traits conferring competitive ability against weeds. Weed Science, 48, 200–204.Qin X L, Niklas K J, Qi L, Xiong Y C, Li F M. 2012. The effects of domestication on the scaling of below- vs. above-ground biomass in four selected wheat (Triticum, Poaceae) genotypes. American Journal of Botany, 99, 1112–1117.Qin X L, Weiner J, Qi L, Xiong Y C, Li F M. 2013. Allometric analysis of the effects of density on reproductive allocation and harvest index in 6 varieties of wheat (Triticum). Field Crops Research, 144, 162–166.Reid T A, Navabi A, Cahill J C, Salmon D, Spaner D. 2009. A genetic analysis of weed competitive ability in spring wheat. Canadian Journal of Plant Science, 89, 591–599.Reynolds M P, Acevedo E, Sayre K D, Fischer R A. 1994. Yield potential in modern wheat varieties: Its association with a less competitive ideotype. Field Crops Research, 37, 149–160.Sahai K. 1955. Competition in plants and its relation to selection. Gold Spring Harbor Symposia on Quantitative Biology, 20, 137–157.Snaydon R W. 1984. Plant demography in an agricultural context. In: Dirzo R, Sarukhan J, eds., Perspective on Plant Populatiin Ecology. Sinauer, Sunderland, MA. pp. 389–407.Song L, Li F M, Fan X W, Xiong Y C, Wang W Q, Wu X B, Turner N C. 2009. Soil water availability and plant competition affect the yield of spring wheat. European Journal of Agronomy, 31, 51–60.Song L, Zhang D W, Li F M, Fan X W, Ma Q, Turner N C. 2010. Soil water availability alters the inter- and intra-cultivar competition of three spring wheat cultivars bred in different eras. Journal of Agronomy and Crop Science, 196, 323–335.Treder K, Wanic M, Nowicki J. 2008. Competition between spring wheat and spring barley under conditions of diversified fertilisation. Part I. Influence on selected morphological characteristics of plants. Acta Agrophysica, 11, 767–780.Vandeleur R K, Gill G S. 2004. The impact of plant breeding on the grain yield and competitive ability of wheat in Australia. Australian Journal of Agricultural Research, 55, 855–861.Wahla I H, Ahmad R, Ehsanullah A A, Jabbar A. 2009. Competitive functions of components crops in some barley based intercropping systems. International Journal of Agriculture and Biology, 11, 69–71. Weigelt A, Jolliffe P. 2003. Indices of plant competition. Journal of Ecology, 91, 707–720.Willey R W, Rao M R. 1980. A competitive ratio for quantifying competition between intercrops. Experimental Agriculture, 16, 117–125.de Wit C T. 1960. On competition. Verslagen Landbouwkundige Onderzoekingen, 66, 1–82. (in Hollands)Worthington M, Reberg-Horton C. 2013. Breeding cereal crops for enhanced weed suppression: Optimizing allelopathy and competitive ability. Journal of Chemical Ecology, 39, 213–231.Zhai L C, Xie R Z, Ma D L, Liu G Z, Wang P, Li S K. 2015. Evaluation of individual competitiveness and the relationship between competitiveness and yield in maize. Crop Science, 55, 2307–2318.Zhai L C, Xie R Z, Wang P, Liu G Z, Fan P P, Li S K. 2016. Impact of recent breeding history on the competitiveness of Chinese maize hybrids. Field Crops Research, 191, 75–82. Zhang D Y, Sun G J, Jiang X H. 1999. Donald’s ideotype and growth redundancy: A game theoretical analysis. Field Crops Research, 61, 179–187.Zhang G G, Yang Z B, Dong S T. 2011. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Research, 124, 66–73.Zhang L, van der Werf W, Zhang S, Li B, Spiertz J H J. 2007. Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Research, 103, 178–188.Zhang R, Zhang D Y, Yuan B Z, Liu K, Wei H. 1999. A study on the relationship between competitive ability and productive performance of spring wheat in semiarid regions of Loess Plateau. Acta Phytoecologica Sinica, 23, 205–210. (in Chinese)Zhao D L, Atlin G N, Bastiaans L, Spiertz J H J. 2006. Cultivar weed competitiveness in aerobic rice: Heritability, correlated traits, and the potential for indirect selection. Crop Science, 46, 372–380. |