Balaghi R, Tychon B, Eerens H, Jlibene M. 2008. Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. International Journal of Applied Earth Observation and Geoinformation, 10, 438–452. Barr M N. 2009. Effects of the Upper Taum Sauk Reservoir Embankment Breach on the Surface-Water Quality and Sediments of the East Fork Black River and the Black River, Southeastern Missouri - 2006-07 (Report No. 2009–5111), Scientific Investigations Report. U.S. Geological Survey, USA.Becker-Reshef I, Vermote E, Lindeman M, Justice C. 2010. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114, 1312–1323. Benedetti R, Rossini P. 1993. On the use of NDVI profiles as a tool for agricultural statistics: The case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sensing of Environment, 45, 311–326. DFO (Dartmouth Flood Observatory). 2015. Global Active Archive of Large Flood Events. [2015-08-20]. http://www.dartmouth.edu/~floods/Archives/index.html Frazier P S, Page K J. 2000. Water body detection and delineation with Landsat TM data. Photogrammetric Engineering and Remote Sensing, 66, 1461–1468.Groten S M E. 1993. NDVI - Crop monitoring and early yield assessment of Burkina Faso. Remote Sensing, 14, 1495–1515.Han W, Yang Z, Di L, Mueller R. 2012. CropScape: A Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Computers and Electronics in Agriculture, 84, 111–123. Johnson D M. 2014. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sensing of Environment, 141, 116–128. Kastens J H, Kastens T L, Kastens D L, Price K P, Martinko E A, Lee R Y. 2005. Image masking for crop yield forecasting using AVHRR NDVI time series imagery. Remote Sensing of Environment, 99, 341–356.Labus M P, Nielsen, G A, Lawrence R L, Engel R, Long D S. 2002. Wheat yield estimates using multi-temporal NDVI satellite imagery. International Journal of Remote Sensing, 23, 4169–4180. Kang L J, Di L P, Deng M D, Shao Y Z, Yu G N, Shrestha R. 2014. Use of geographically weighted regression model for exploring spatial patterns and local factors behind NDVI-precipitation correlation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 4530–4538. Kang L J, Di L P, Shao Y Z, Yu E, Zhang B, Shrestha R. 2013. Study of the NDVI-precipitation correlation stratified by crop type and soil permeability. In: Proceeding of 2013 Second International Conference on Agro-Geoinformatics. IEEEE, USA. pp. 194–199. Linhart M S, Eash D A. 2010. Floods of May 30 to June 15, 2008. In: the Iowa and Cedar River Basins, Eastern Iowa. US Geological Surveym, USA.Liu J, Pattey E, Jégo G. 2012. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 123, 347–358. Mkhabela M S, Bullock P, Raj S, Wang S, Yang Y. 2011. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agricultural and Forest Meteorology, 151, 385–393. Mkhabela M S, Mkhabela M S, Mashinini N N. 2005. Early maize yield forecasting in the four agro-ecological regions of Swaziland using NDVI data derived from NOAA’s-AVHRR. Agricultural and Forest Meteorology, 129, 1–9. Moriondo M, Maselli F, Bindi M. 2007. A simple model of regional wheat yield based on NDVI data. European Journal of Agronomy, 26, 266–274. Del Ninno C, Dorosh P A, Smith L C. 2003. Public policy, markets and household coping strategies in bangladesh: Avoiding a food security crisis following the 1998 floods. World Development, 31, 1221–1238.Pantaleoni E, Engel B A, Johannsen C J. 2007. Identifying agricultural flood damage using Landsat imagery. Precision Agriculture, 8, 27–36. Prasad A K, Chai L, Singh R P, Kafatos M. 2006. Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation, 8, 26–33. Quarmby N A, Milnes M, Hindle T L, Silleos N. 1993. The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction. International Journal of Remote Sensing, 14, 199–210. Rasmussen M S. 1992. Assessment of millet yields and production in northern Burkina Faso using integrated NDVI from the AVHRR. International Journal of Remote Sensing, 13, 3431–3442. Ren J, Chen Z, Zhou Q, Tang H. 2008. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. International Journal of Applied Earth Observation and Geoinformation, 10, 403–413. Shao J. 1993. Linear Model selection by cross-validation. Journal of the American Statistical Association, 88, 486–494. Shrestha R, Di L P. 2013. Land/water detection and delineation with Landsat data using Matlab/ENVI. In: Proceeding of 2013 Second International Conference on Agro-Geoinformatics. IEEEE, USA. pp. 211–214. Shrestha R, Di L P, Yu G N, Shao Y A, Kang L J, Zhang B. 2013. Detection of flood and its impact on crops using NDVI - Corn case. In: Proceeding of 2013 Second International Conference on Agro-Geoinformatics. IEEEE, USA. pp. 200–204. Smith L C. 1997. Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrological Processes, 11, 1427–1439.Sakamoto T, Wardlow B D, Gitelson A A. 2011. Detecting spatiotemporal changes of corn developmental stages in the U.S. corn belt using MODIS WDRVI Data. IEEE Transactions on Geoscience and Remote Sensing, 49, 1926–1936. Thieken A H, Ackermann V, Elmer F, Kreibich H, Kuhlmann B, Kunert U, Maiwald H, Merz B, Müller M, Piroth K. 2008. Methods for the evaluation of direct and indirect flood losses. In: 4th International Symposium on Flood Defense: Managing Flood Risk, Reliability and Vulnerability. Toronto, Ontario, Canada.Tholey N, Clandilloni S, De Fraipont P. 1997. The contribution of spaceborne SAR and optical data in monitoring flood events: Examples in northern and southern France. Hydrological Processes, 11, 1409–1413. USDA (Unites States Department of Agriculture). 2008. 4-RM FSA RMA Handbook: FCIC Program Integrity. United States Department of Agriculture Risk Management Agency, USA.USDA, ERS (Economic Research Service). 2013. USDA Economic Research Service - Corn. [2015-7-20]. http://www.ers.usda.gov/topics/crops/corn.aspx USDA, NASS (National Agricultural Statistics Service). 2015a. Crop Production 2014 Summary. [2015-8-20]. https://quickstats.nass.usda.gov/USDA, NASS. 2015b. USDA/NASS quickstats ad-hoc query tool. Quick Stats. [2015-8-20]. https://quickstats.nass.usda.gov/ Vining K C Chase K J, Loss G R. 2013. General Weather Conditions and Precipitation Contributing to the 2011 Flooding in the Mississippi River and Red River of the North Basins, December 2010 through July 2011: Chapter B in 2011 floods of the central United States (Report No. 1798B). Professional Paper. Reston, VA.Wang R, Bowling L C, Cherkauer K A. 2016a. Estimation of the effects of climate variability on crop yield in the Midwest USA. Agricultural and Forest Meteorology, 216, 141–156. Wang R, Cherkauer K, Bowling L. 2016b. Corn response to climate stress detected with satellite-based NDVI time series. Remote Sensing, 8, 269. Yu G, Di L, Zhang B, Shao Y, Shrestha R, Kang L. 2013. Remote-sensing-based flood damage estimation using crop condition profiles. In: Proceeding of 2013 Second International Conference on Agro-Geoinformatics. IEEEE, USA. pp. 205–210. |