Atzberger C. 2004. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sensing of Environment, 93, 53–67.Atzberger C, Darvishzadeh R, Immitzer M, Schlerf M, Skidmore A, Le Maire G. 2015. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 43, 19–31.Bader M Y, Ruijten J J. 2008. A topography-based model of forest cover at the alpine tree line in the tropical Andes. Journal of Biogeography, 35, 711–723.Baret F, Weiss M, Allard D, Garrigues S, Leroy M, Jeanjean H, Fernandes R, Myneni R, Privette J, Morisette J. 2005. VALERI: A network of sites and a methodology for the validation of medium spatial resolution land satellite products. [2013-5-18]. http://w3.avignon.inra.fr/valeri/documents/VALERI-RSESubmitted.pdfBreiman L. 1996. Bagging predictors. Machine Learning, 24, 123–140.Breiman L. 2001. Random forests. Machine Learning, 45, 5–32.Chen J M, Pavlic G, Brown L, Cihlar J, Leblanc S G, White H P, Hall R J, Peddle D R, King D J, Trofymow J A, Swift E, Van der sanden J, Pellikka P K E. 2002. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sensing of Environment, 80, 165–184.Combal B, Baret F, Weiss M. 2002. Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case study on sugar beet canopies. Agronomie, 22, 205–215.Dobrowski S Z, Safford H D, Cheng Y B, Ustin S L. 2008. Mapping mountain vegetation using species distribution modeling, image-based texture analysis, and object-based classification. Applied Vegetation Science, 11, 499–508.Evans J S, Cushman S A. 2009. Gradient modeling of conifer species using random forests. Landscape Ecology, 24, 673–683.Fan J, Zhong H, Liang B, Shi P, Yu G. 2003. Carbon stock in grassland ecosystem and its affecting factors. Grassland of China, 25, 51–58. (in Chinese)Fan W, Liu Y, Xu X, Chen G, Zhang B. 2014. A new FAPAR analytical model based on the law of energy conservation: A case study in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 3945–3955.Fan W J, Xu X R, Liu X C, Yan B Y, Cui Y K. 2010. Accurate LAI retrieval method based on PROBA/CHRIS data. Hydrology and Earth System Sciences, 14, 1499–1507.Ge Y, Bai H, Wang J, Cao F. 2012. Assessing the quality of training data in the supervised classification of remotely sensed imagery: A correlation analysis. Journal of Spatial Science, 57, 135–152.Ge Y, Wang J H, Heuvelink G B M, Jin R, Li X, Wang J F. 2015. Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River basin, China. International Journal of Geographical Information Science, 29, 92–110.Genuer R, Poggi J M, Tuleau-Malot C. 2010. Variable selection using random forests. Pattern Recognition Letters, 31, 2225–2236.Genuer R, Poggi J M, Tuleau C. 2008. Random Forests: some methodological insights. [2015-9-18]. http://arxiv.org/pdf/0811.3619v1.pdfGitelson A A. 2004. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161, 165–173.Gitelson A A, Verma S B, Vi A A, Rundquist D C, Keydan G, Leavitt B, Arkebauer T J, Burba G G, Suyker A E. 2003a. Novel technique for remote estimation of CO2 flux in maize. Geophysical Research Letters, 30, 1486–1489.Gitelson A A, Vi A A, Arkebauer T J, Rundquist D C, Keydan G, Leavitt B. 2003b. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30, 1248–1251.Haboudane D, Miller J R, Pattey E, Zarco-tejada P J, Strachan I B. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90, 337–352.Hapfelmeier A, Ulm K. 2013. A new variable selection approach using random forests. Computational Statistics & Data Analysis, 60, 50–69.Heung B, Bulmer C E, Schmidt M G. 2014. Predictive soil parent material mapping at a regional-scale: A random forest approach. Geoderma, 214–215, 141–154.Hotelling H. 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417.Hultquist C, Chen G, Zhao K. 2014. A comparison of Gaussian process regression, random forests and support vector regression for burn severity assessment in diseased forests. Remote Sensing Letters, 5, 723–732.Jacquemoud S, Bacour C, Poilv H, Frangi J P. 2000. Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode. Remote Sensing of Environment, 74, 471–481.Jacquemoud S, Baret F. 1990. PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34, 75–91.Jolliffe I. 2002. Principal Component Analysis. John Wiley & Sons, Ltd. New York, United States of America.Jordan C F. 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50, 663–666.Kaufman Y J, Tanre D. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30, 261–270.De Kauwe M G, Disney M I, Quaife T, Lewis P, Williams M. 2011. An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sensing of Environment, 115, 767–780.Kilibarda M, Hengl T, Heuvelink G, Graler B, Pebesma E, Tadic M P, Bajat B. 2014. Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. Journal of Geophysical Research (Atmospheres), 119, 2294–2313.Kopecký M, ?í?ková Š. 2010. Using topographic wetness index in vegetation ecology: Does the algorithm matter? Applied Vegetation Science, 13, 450–459.Lemaire G, Wilkins R, Hodgson J. 2005. Challenges for grassland science: managing research priorities. Agriculture, Ecosystems & Environment, 108, 99–108.Liang L, Di L, Zhang L, Deng M, Qin Z, Zhao S, Lin H. 2015. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment, 165, 123–134.Liaw A, Wiener M. 2002. Classification and regression by randomForest. [2015-9-18]. https://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdfLiu M, Liu X, Li J, Ding C, Jiang J. 2014. Evaluating total inorganic nitrogen in coastal waters through fusion of multi-temporal RADARSAT-2 and optical imagery using random forest algorithm. International Journal of Applied Earth Observation and Geoinformation, 33, 192–202.Liu Y, Ju W, Zhu G, Chen J, Xing B, Zhu J, Zhou Y. 2011. Retrieval of leaf area index for different grasslands in Inner Mongolia prairie using remote sensing data. Acta Ecologica Sinica, 39, 5159–5170. (in Chinese)Morisette J T, Baret F, Privette J L, Myneni R B, Nickeson J E, Garrigues S, Shabanov N V, Weiss M, Fernandes R A, Leblanc S G, Kalacska M, Sanchez-azofeifa G A, Chubey M, Rivard B, Stenberg P, Rautiainen M, Voipio P, Manninen T, Pilant A N, Lewis T E, et al. 2006. Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Transactions on Geoscience and Remote Sensing, 44, 1804–1817.Prasad A M, Iverson L R, Liaw A. 2006. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9, 181–199.Qin C, Zhu A X, Yang L, Li B, Pei T. 2007. Topographic wetness index computed using multiple flow direction algorithm and local maximum downslope gradient. In: The 7th International Workshop of Geographical Information System. September 12–14, 2007. Beijing, China.Ramoelo A, Cho M A, Mathieu R, Madonsela S, Van de kerchove R, Kaszta Z, Wolff E. 2015. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. International Journal of Applied Earth Observation and Geoinformation, 43, 43–54.Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107.Rouse Jr J W, Haas R, Schell J, Deering D. 1974. Monitoring vegetation systems in the Great Plains with ERTS. NASA Special Publication, 351, 309.Running S W, Nemani R R, Peterson D L, Band L E, Potts D F, Pierce L L, Spanner M A. 1989. Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology, 70, 1090–1101.Sellers P J, Dickinson R E, Randall D A, Betts A K, Hall F G, Berry J A, Collatz G J, Denning A S, Mooney H A, Nobre C A, Sato N, Field C B, Henderson-sellers A. 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275, 502–509.Svetnik V, Liaw A, Tong C, Culberson J C, Sheridan R P, Feuston B P. 2003. Random forest: A classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences, 43, 1947–1958.Van Niel K P, Laffan S W, Lees B G. 2004. Effect of error in the DEM on environmental variables for predictive vegetation modelling. Journal of Vegetation Science, 15, 747–756.Verrelst J, Schaepman M E, Koetz B, Kneubühler M. 2008. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sensing of Environment, 112, 2341–2353.Verrelst J, Schaepman M E, Malenovsk Z, Clevers J G. 2010. Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval. Remote Sensing of Environment, 114, 647–656.Viña A A, Gitelson A A, Nguy-robertson A L, Peng Y. 2011. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115, 3468–3478.Wang J, Ge Y, Heuvelink G, Zhou C. 2014. Spatial sampling design for estimating regional GPP with spatial heterogeneities. IEEE Geoscience and Remote Sensing Letters, 11, 539–543.Welles J M, Norman J M. 1991. Instrument for indirect measurement of canopy architecture. Agronomy Journal, 83, 818–825. |