Journal of Integrative Agriculture ›› 2016, Vol. 15 ›› Issue (4): 744-754.DOI: 10.1016/S2095-3119(15)61179-0

• 论文 • 上一篇    下一篇

Gene and protein expression profiling analysis of young spike development in large spike wheat germplasms

CHEN Dan1, 2*, ZHANG Jin-peng1*, LIU Wei-hua1, WU Xiao-yang1, YANG Xin-ming1, LI Xiu-quan1, LU Yu-qing1, LI Li-hui1   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
    2 Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture/Scientific Observation for Rice Germplasm Resources of Yunnan, Ministry of Agriculture/Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, P.R.China
  • 收稿日期:2015-03-03 出版日期:2016-04-01 发布日期:2016-04-07
  • 通讯作者: LI Li-hui, Tel: +86-10-62186670, Fax: +86-10-62189650, E-mail: lilihui@caas.cn
  • 作者简介:CHEN Dan, Mobile: +86-13668714841, E-mail: xiaoyezi09@163.com; ZHANG Jin-peng, Mobile: +86-13269833221, E-mail: zhangjinpeng@caas.cn
  • 基金资助:

    This work was supported by grants from the National Basic Research Program of China (973 Program, 2011CB100104), the National High-Tech R&D Program of China (2011AA100101), the National Natural Science Foundation of China (31071416), and the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD01B02).

Gene and protein expression profiling analysis of young spike development in large spike wheat germplasms

CHEN Dan1, 2*, ZHANG Jin-peng1*, LIU Wei-hua1, WU Xiao-yang1, YANG Xin-ming1, LI Xiu-quan1, LU Yu-qing1, LI Li-hui1   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
    2 Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture/Scientific Observation for Rice Germplasm Resources of Yunnan, Ministry of Agriculture/Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, P.R.China
  • Received:2015-03-03 Online:2016-04-01 Published:2016-04-07
  • Contact: LI Li-hui, Tel: +86-10-62186670, Fax: +86-10-62189650, E-mail: lilihui@caas.cn
  • About author:CHEN Dan, Mobile: +86-13668714841, E-mail: xiaoyezi09@163.com; ZHANG Jin-peng, Mobile: +86-13269833221, E-mail: zhangjinpeng@caas.cn
  • Supported by:

    This work was supported by grants from the National Basic Research Program of China (973 Program, 2011CB100104), the National High-Tech R&D Program of China (2011AA100101), the National Natural Science Foundation of China (31071416), and the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD01B02).

摘要: The wheat grain number per spike (GNPS) is a major yield-limiting factor in wheat-breeding programs. Germplasms with a high GNPS are therefore valuable for increasing wheat yield potential. To investigate the molecular characteristics of young spike development in large-spike wheat germplasms with high GNPS, we performed gene and protein expression profiling analysis with three high-GNPS wheat lines (Pubing 3228, Pubing 3504 and 4844-12) and one low-GNPS control variety (Fukuho). The phenotypic data for the spikes in two growth seasons showed that the GNPS of the three large-spike wheat lines were significantly higher than that of the Fukuho control line. The Affymetrix wheat chip and isobaric tags for relative and absolute quantitation-tandam mass spectrometry (iTRAQ-MS/MS) technology were employed for gene and protein expression profiling analyses of young spike development, respectively, at the floret primordia differentiation stage. A total of 598 differentially expressed transcripts (270 up-regulated and 328 down-regulated) and 280 proteins (122 up- regulated and 158 down-regulated) were identified in the three high-GNPS lines compared with the control line. We found that the expression of some floral development-related genes, including Wknox1b, the AP2 domain protein kinase and the transcription factor HUA2, were up-regulated in the high-GNPS lines. The expression of the SHEPHERD (SHD) gene was up-regulated at both the transcript and protein levels. Overall, these results suggest that multiple regulatory pathways, including the CLAVATA pathway and the meristem-maintaining KNOX protein pathway, take part in the development of the high-GNPS phenotype in our wheat germplasms.

Abstract: The wheat grain number per spike (GNPS) is a major yield-limiting factor in wheat-breeding programs. Germplasms with a high GNPS are therefore valuable for increasing wheat yield potential. To investigate the molecular characteristics of young spike development in large-spike wheat germplasms with high GNPS, we performed gene and protein expression profiling analysis with three high-GNPS wheat lines (Pubing 3228, Pubing 3504 and 4844-12) and one low-GNPS control variety (Fukuho). The phenotypic data for the spikes in two growth seasons showed that the GNPS of the three large-spike wheat lines were significantly higher than that of the Fukuho control line. The Affymetrix wheat chip and isobaric tags for relative and absolute quantitation-tandam mass spectrometry (iTRAQ-MS/MS) technology were employed for gene and protein expression profiling analyses of young spike development, respectively, at the floret primordia differentiation stage. A total of 598 differentially expressed transcripts (270 up-regulated and 328 down-regulated) and 280 proteins (122 up- regulated and 158 down-regulated) were identified in the three high-GNPS lines compared with the control line. We found that the expression of some floral development-related genes, including Wknox1b, the AP2 domain protein kinase and the transcription factor HUA2, were up-regulated in the high-GNPS lines. The expression of the SHEPHERD (SHD) gene was up-regulated at both the transcript and protein levels. Overall, these results suggest that multiple regulatory pathways, including the CLAVATA pathway and the meristem-maintaining KNOX protein pathway, take part in the development of the high-GNPS phenotype in our wheat germplasms.

Key words: wheat , high grain number per spike , spike development ,  expression profiling