Ahn I P, Kim S, Lee Y H. 2008. High throughput screening of antifungal metabolites against. Colletotrichum gloeosporioides. The Plant Pathology Journal, 24, 24- 30. Alcerito T, Barbo F E, Negri G, Santos D Y A C, Meda C L, Young M C M, Chávez D, Blatt C T T. 2002. Foliar epicuticular wax of Arrabidaea brachypoda: flavonoids and antifungal activity. Biochemical Systematics and Ecology, 30, 677-683 Arrendale R F, Severson R F, Chartyk O T, Stephenson M G. 1988. Isolation and identification of the wax esters from the cuticular waxes of green tobacco leaf. Beitraege zur Tabakforschung International, 14, 67-84 Barnes J D, Percy K E, Paul N D, Jones P, Mclaughlin C K, Mullineaux P M, Creissen G, Wellburn A R. 1996. The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L.) leaf surfaces. Journal of Experimental Botany, 47, 99-109 Blakeman P J, Sztejnberg A. 1973. Effect of surface wax on inhibition of germination of Botrytis cinerea spores on beetroot leaves. Physiological and Molecular Plant Pathology, 3, 269-278 Buschhaus C, Herz H, Jetter R. 2007. Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves. Annals of Botany, 100, 1557-1564 Chassot C, Nawrath C, Metraux J P. 2007. Cuticular defects lead to full immunity to a major plant pathogen. The Plant Journal, 49, 972-980 Conn K L, Tewari P J. 1989. Interactions of Alternaria brassicae conidia with leaf epicuticular wax of canola. Mycological Research, 93, 240-242 Eigenbrode S D, Espelie K E. 1995. Effects of plant epicuticular lipids on insect herbivores. Annual Review of Entomology, 40, 171-194 Gülz P G, Müller E, Schmitz K, Marner F J, Güth S. 1992. Chemical composition and surface structures of epicuticular waxes of Gingko biloba, Magnolia grandiflora and Liridendron tulipifera. Zeitschrift für Naturforschung, 47, 516-526 (in German) Hansjakob A, Bischof S, Bringmann G, Riederer M, Hildebrandt U. 2010. Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner. New Phytologist, 188, 1039-1054 Hegde Y, Kolattukudy P E. 1997. Cuticular waxes relieve self-inhibition of germination and appressorium formation by the conidia of Magnaporthe grisea. Physiological and Molecular Plant Pathology, 51, 75- 84. Inuyang E N, Butt T M, Beckett A, Archer S. 1999. The effect of crucifer epicuticular waxes and leaf extracts on the germination and virulence of Metarhizium anisopliae conidia. Mycological Research, 103, 419-426 Jarrold S L, Moore D, Potter U, Charnley K A. 2007. The contribution of surface waxes to pre-penetration growth of an entomopathogenic fungus on host cuticle. Mycological Research, 111, 240-249 Jetter R, Riederer M. 1994. Epicuticular crystals of nonacosan-10-ol: in vitro reconstitution and factors influencing crystal habits Planta, 195, 257-270 Jetter R, Riederer M. 1995. In vitro reconstitution of epicuticular wax crystals: Formation of tubular aggregates by long chain secondary alkanediols. Botanica Acta, 108, 111-120 Kim K W, Park E W, Ahn K K. 1999. Pre-penetration behavior of Botryosphaeria dothidea on apple fruits. The Plant Pathology Journal, 15, 223-227 Koch K, Bhushan B, Barthlott W. 2010. Multifunctional plant surfaces and smart materials. In: Bhushan B, ed., Handbook of Nanotechnology. Springer Press, New York. pp. 1399-1436 Kolattukudy P E. 1985. Enzymatic penetration of the plant cuticle by fungal pathogens. Annual Review of Phytopathology, 23, 223-250 Kolattukudy P E, Rogers L M, Li D, Hwang C, FlaishmanM A. 1995. Surface signaling in pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 92, 4080-4087 ?a?niewska J, Macioszek V K, Kononowicz A K. 2012. Plant-fungus interface: The role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiological and Molecular Plant Pathology, 78, 24- 30. Li Y C, An L Z, Ge Y H, Li Y, Bi Y. 2008. Detection and isolation of preformed antifungal compounds from the peel of pyrus bretschneideri Rehd. cv. Pingguoli at different stages of maturity. Journal of Phytopathology, 156, 115-119 Li YC, Bi Y, An L Z. 2007. Occurrence and latent infection of Alternaria rot of Pingguoli pear (Pyrus bretschneideri Rehd. cv. Pingguoli) fruit in Gansu, China. Journal of Phytopathology, 155, 56-60 Meusel I, Neinhuis C, Markstädter C, Barthlott W. 1999. Ultrastructure, chemical composition, and recrystallization of epicuticular waxes: transversely ridged rodlets. Canadian Journal of Botany, 77, 706- 720. Neinhuis C, Barthlott W. 1997. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79, 667-677 Oh B J, Kim K D, Kim Y S. 1999. Effect of cuticular wax layers of green and red pepper fruits on infection by Colletotrichum gloeosporioides. Journal of Phytopathology, 147, 547-552 Podila G K, Rogers L, Kolattukudy P E. 1993. Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiology, 103, 267-272 Rashotte A M, Jenks M A, Feldmann K A. 2001. Cuticular waxes on eceriferum mutants of Arabidopsis thaliana. Phytochemistry, 57, 115-123 Rashotte A M, Feldmann K A. 1998. Correlations between epicuticular wax structures and chemical composition in Arabidopsis thaliana. International Journal of Plant Sciences, 159, 773-779 Reisige K, Gorzelanny C, Daniels U, Moerschbacher B M. 2006. The C28 aldehyde octacosanal is a morphogenetically active component involved in host plant recognition and infection structure differentiation in the wheat stem rust fungus. Physiological and Molecular Plant Pathology, 68, 33-40 Russin J S, Guo B Z, Tubajika K M, Brown R L, Cleveland T E, Wisdstrom N W. 1997. Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus. Phytopathology, 87, 529-553 Salasoo I. 1983. Effect of epicuticular wax isolation method on alkane distribution pattern. Biochemical Systematics and Ecology, 11, 17-20 Shepherd T, Robertson G W, Griffiths D W, Birch A N E, Duncan G. 1995. Effects of environment on the composition of epicuticular wax from Kale and Swede. Phytochemistry, 40, 407-417 Stammitti L, Derridj S, Garrec J P. 1996. Leaf epicuticular lipids of Prunus laurocerasus: impotance of extraction methods. Phytochemistry, 43, 45-48 Stockwell V, Hanchey P. 1985. Effect of cuticle treatments on infection of Phaseolus vulgaris in Rhizoctonia solani. Journal of Phytopathology, 114, 6-12 Yin Y, Bi Y, Chen S J, Li Y C, Wang Y, Ge Y H, Ding B, Li Y C H, Zhang Z. 2011. Chemical composition and antifungal activity of cuticular wax isolated from Asian pear fruit (cv. Pingguoli). Scientia Horticulturae, 129, 577-582 Yuan K J, Sun R H, Yang H A. 1995. A new method for measuring and calculating surface areas of apple fruits. Journal of Biomathematics, 10, 159-163 Zabka V, Stangl M, Bringmann G, Vogg G, Riederer M, Hildebrandt U. 2007. Host surface properties affect prepenetration processes in the barley powdery mildew fungus. New Phytologist, 177, 251-263 Zhou X Y, Chen X B, Xu X L, Liu A L, Zou J, Gao G B. 2007. On comparison of extraction methods of epicuticular wax and content of rice leaves. Journal of Hunan Agricultural University, 33, 273-276. (in Chinese) |