[1]Abeles F B, Morgan P W, Saltveit Jr M E. 1992. Ethylene in Plant Biology. Academic Press, New York. Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker J R . 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284, 2148-2152. [2]Binder B M, Walker J M, Gagne J M, Emborg T J, Hemmann G, Bleecker A B, Vierstra R D. 2007. The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. The Plant Cell, 19, 509-523. [3]Chang C, Kwok S F, Bleecker A B, Meyerowitz E M. 1993. Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators. Science, 262, 539-544. [4]Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker J R. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENEINSENSITIVE3 and related proteins. Cell, 89, 1133-1144. [5]Charng Y Y, Sun C W, Yan S L, Chou S J, Chen Y R, Yang S F. 1998. cDNA sequence of a putative ethylene receptor from carnation petals. Plant Physiology, 115, 863. [6]Clark K L, Larsen P B, Wang X, Chang C. 1998. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS1 ethylene receptors. Proceedings of the National Academy of Science of the USA, 95, 5401-5406. [7]Fu Z, Wang H, Liu J, Liu J, Wang J, Zhang Z, Yu Y. 2011. Cloning and characterization of a DCEIN2 gene responsive to ethylene and sucrose in carnation cut flower. Plant Cell, Tissue & Organ Culture, 105, 447-455. [8]Gagne J M, Smalle J, Gingerich D J, Walker J M, Yoo S D, Yanagisawa S, Vierstra R D. 2004. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proceedings of the National Academy of Sciences of the USA, 101, 6803-6808. [9]Guo H, Ecker J R. 2003. Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell, 115, 667-677. [10]Hoeberichts F A, van Doorn W G, Vorst O, Hall R D, van Wordragen M F. 2007. Sucrose prevents up-regulation of senescence-associated genes in carnation petals. Journal of Experimental Botany, 58, 2873-2885. [11]Hua J, Chang C, Sun Q, Meyerowitz E M. 1995. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science, 269, 1712-1714. [12]Hua J, Meyerowitz E M. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell, 94, 261-271. [13]Iordachescu M, Verlinden S. 2005. Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. Journal of Experimental Botany, 56, 2011-2018. [14]Jones M L, Woodson W R. 1999. Differential expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in carnation. Plant Physiology, 119, 755-764. [15]Kieber J J, Rothenberg M, Roman G, Feldmann K A, Ecker J A. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell, 72, 427-441. [16]Koch K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 7, 235-246. [17]Konishi M, Yanagisawa S. 2008. Ethylene signalling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. The Plant Journal, 55, 821-831. [18]Kumar N, Srivastava G C, Dixit K. 2008. Effect of ethanol plus sucrose on the vase-life of cut rose Rosa hybrida L. Journal of Horticultural Science & Biotechnology, 83, 749-754. [19]Lorenzo O, Piqueras R, Sanchez-Serrano J J, Solano R. 2003. Ethylene response factor integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 15, 165-178. [20]Ma N, Tan H, Liu X H, Xue J Q, Li Y H, Gao J P. 2006. Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. Journal of Experimental Botany, 57, 2763-2773. [21]Nagata M, Tanikawa N, Onazaki T, Mori H. 2000. Ethylene receptor gene (ETR) homolog from carnation. Journal of Japanese Society for Horticultural Science, 69(Suppl.), 407. (in Japanese) [22]Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K. 2001. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiology, 127, 252-261. [23]Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P. 2003. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell, 115, 679-689. [24]Sakai H, Hua J, Chen Q G, Chang C, Medrano L J, Bleecker A B. 1998. Meyerowitz EM. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 95, 5812-5817. [25]Schaller G E, Bleecker A B. 1995. Ethylene binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science, 270, 1809-1811. [26]Shibuya K, Nagata M, Tanikawa N, Yoshioka T, Hashiba T, Satoh S. 2002. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.) Journal of Experimental Botany, 53, 399-406. [27]Verlinden S, Garcia J J. 2004. Sucrose loading decreases ethylene responsiveness in carnation (Dianthus caryophyllus cv. White Sim) petals. Postharvest Biology and Technology, 31, 305-312. [28]Waki K, Shibuya K, Yoshioka T, Hashiba T, Satoh S. 2001. Cloning of a cDNA encoding EIN3-like protein (DC-EIL1) and decrease in its mRNA level during senescence in carnation flower tissues. Journal of Experimental Botany, 52, 377-379. [29]Yanagisawa S, Yoo S D, Sheen J. 2003. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature, 425, 521-525. [30]Yang S F, Hoffman N E. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol, 35, 155-189. [31]Yang Y, Wu Y, Pirrello J, Regad F, Bouzayen M, Deng W, Li Z. 2010. Silencing Sl-EBF1 and Sl-EBF2 expression causes constitutive ethylene response phenotype, accelerated. Journal of Experimental Botany, 61, 697-708. [32]Yu Y, Wang H, Fu Z, Wang J, Liu J. 2011. Transcriptional regulation of two RTE-like genes of carnation during flower senescence and upon ethylene exposure, wounding and sucrose. Plant Biology, 13, 719-724. |