Journal of Integrative Agriculture ›› 2013, Vol. 12 ›› Issue (8): 1431-1440.DOI: 10.1016/S1671-2927(00)9057
GAO Feng, NIU Yi-ding, HAO Jin-feng, BADE Rengui, ZHANG Li-quan , HASI Agula
收稿日期:
2012-09-18
出版日期:
2013-08-01
发布日期:
2013-09-12
通讯作者:
Correspondence HASI Agula, Tel: +86-471-4992209, Fax: +86-471-4992435, E-mail: hasind@sina.com
作者简介:
GAO Feng, E-mail: imgaofeng@163.com
基金资助:
This work was supported by the National Natural Science Foundation of China (30960159) and the Specialized Research Foundation for the Doctoral Program of Higher Education (200801260002).
GAO Feng, NIU Yi-ding, HAO Jin-feng, BADE Rengui, ZHANG Li-quan , HASI Agula
Received:
2012-09-18
Online:
2013-08-01
Published:
2013-09-12
Contact:
Correspondence HASI Agula, Tel: +86-471-4992209, Fax: +86-471-4992435, E-mail: hasind@sina.com
About author:
GAO Feng, E-mail: imgaofeng@163.com
Supported by:
This work was supported by the National Natural Science Foundation of China (30960159) and the Specialized Research Foundation for the Doctoral Program of Higher Education (200801260002).
摘要: Melon (Cucumis melo L.) is an important horticultural crop worldwide. Ethylene regulates the ripening process and affects the ripening rate. To screen genes that are differentially expressed at the burst of ethylene climacteric in melon fruit, we performed suppression subtractive hybridization (SSH) to generate forward and reverse libraries, for which we sequenced 439 and 445 clones, respectively. Our BLAST analysis showed that the genes from the 2 libraries were involved in metabolism, signal transduction, cell structure, transcription, translation, and defense. Six genes were analyzed by qRT-PCR during the differential developmental stage of melon fruit. Our results provide new insight into the understanding of climacteric ripening of melon fruit.
GAO Feng, NIU Yi-ding, HAO Jin-feng, BADE Rengui, ZHANG Li-quan , HASI Agula. Identification of Differentially Expressed Genes During Ethylene Climacteric of Melon Fruit by Suppression Subtractive Hybridization[J]. Journal of Integrative Agriculture, 2013, 12(8): 1431-1440.
GAO Feng, NIU Yi-ding, HAO Jin-feng, BADE Rengui, ZHANG Li-quan , HASI Agula. Identification of Differentially Expressed Genes During Ethylene Climacteric of Melon Fruit by Suppression Subtractive Hybridization[J]. Journal of Integrative Agriculture, 2013, 12(8): 1431-1440.
[1]Asif M, Dhawan P, Nath P. 2000. A simple procedure forthe isolation of high quality RNA from ripening bananafruit. Plant Molecular Biology Reporter, 18, 109-115[2]Buescher R H, Buescher R W. 2001. Production and stabilityof (E, Z)-2, 6-nonadienal, the major flavor volatile ofcucumbers Journal of Food Sciences, 66, 357-361[3]Burg S P, Burg E A. 1962. Role of ethylene in fruit ripening.Plant Physiology, 37, 179-189[4]Cheong J K, Virshup D M. 2011. Casein kinase 1: Complexityin the family. The International Journal of Biochemistry& Cell Biology, 43, 465-469[5]Choi J W, Kim G B, Huh Y C, Kwon M R, Mok I G, Kim J W,Lee T S, Kim S, Im K H. 2004. Cloning of genesdifferentially expressed during the initial stage of fruitdevelopment in melon (Cucumis melo cv. Reticulatus).Molecules and Cells, 17, 237-241[6]Clepet C, Joobeur T, Zheng Y, Jublot D, Huang M, TrunigerV, Boualem A, Hernandez-Gonzalez M, Dolcet-SanjuanR, Portnoy V, et al. 2011. Analysis of expressedsequence tags generated from full-length enrichedcDNA libraries of melon. BMC Genomics, 12, 252.[7]Diatchenko L, Lau Y F, Campbell A P, Chenchik A,Moqadam F, Huang B, Lukyanov S, Lukyanov K,Gurskaya N, Sverdlov E D, et al. 1996. Suppressionsubtractive hybridization: a method for generatingdifferentially regulated or tissue-specific cDNA probesand libraries. Proceedings of the National Academy ofSciences of the United States of America, 93, 6025-6030[8]Dickson J M J J, Vincze E, Grant M R, Smith L A, Rodber KA, Farnden K J F, Reynolds P H S. 1992. Molecularcloning of the gene encoding developing seed lasparaginasefrom Lupinus angustifolius. PlantMolecular Biology, 20, 333-336[9]de Godoy A, Cordenunsi B R, Lajolo F M, do Nascimento JR O. 2010. Differential display and suppressionsubtractive hybridization analysis of the pulp ofripening banana. Scientia Horticulturae, 124, 51-56[10]Ezura H, Owino W O. 2008. Melon, an alternative modelplant for elucidating fruit ripening. Plant Science, 175,121-129[11]Fotopoulos V, Gilbert M J, Pittman J K, Marvier A C,Buchanan A J, Sauer N, Hall J L, Williams L E. 2003. Themonosaccharide transporter gene, AtSTP4, and the cellwallinvertase, At beta fruct1, are induced in Arabidopsisduring infection with the fungal biotroph Erysiphecichoracearum. Plant Physiology, 132, 821-829[12]Fragoso S, Espindola L, Paez-Valencia J, Gamboa A,Camacho Y, Martinez-Barajas E, Coello P. 2009. SnRK1isoforms AKIN10 and AKIN11 are differentiallyregulated in Arabidopsis plants under phosphatestarvation. Plant Physiology, 149, 1906-1916[13]Fuchs S, Grill E, Meskiene I, Schweighofer A. 2012. Type2C protein phosphatases in plants. FEBS Journal, doi:10.1111/j.1742-46582012.08670.xGiovannoni J J. 2001. Molecular biology of fruit maturationand ripening. Annual Review of Plant Physiology andPlant Molecular Biology, 52, 725-749[14]Giovannoni J J. 2004. Genetic regulation of fruitdevelopment and ripening. The Plant Cell, 16, 170-180[15]Giovannoni J J. 2007. Fruit ripening mutants yield insightsinto ripening control. Current Opinion in Plant Biology,10, 283-289[16]Goulao L F, Oliveira C M. 2007. Molecular identification ofnovel differentially expressed mRNAs up-regulatedduring ripening of apples. Plant Science, 172, 306-318[17]Guy C L, Li Q B. 1998. The organization and evolution ofthe spinach stress 70 molecular chaperone gene family.The Plant Cell, 10, 539-556[18]Hagen G, Guilfoyle T. 2002. Auxin-responsive geneexpression: genes, promoters and regulatory factors.Plant Molecular Biology, 49, 373-385[19]Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas W J,Wang X, Xie B, Ni P, et al. 2009. The genome of thecucumber, Cucumis sativus L. Nature Genetics, 41,1275-1281[20]Ibdah M, Azulay Y, Portnoy V, Wasserman B, Bar E, MeirA, Burger Y, Hirschberg J, Schaffer A A, Katzir N, et al.2006. Functional characterization of CmCCD1, acarotenoid cleavage dioxygenase from melon.Phytochemistry, 67, 1579-1589[21]Jin Z Q, Xu B Y, Liu J H, Su W, Zhang J B, Yang X L, Jia CH, Li M Y. 2009. Identification of genes differentiallyexpressed at the onset of the ethylene climacteric inbanana. Postharvest Biology and Technology, 52, 307-309[22]Katzir N, Harel-Bega R, Protnoy V, Tzuri G, Koren E, Lev S,Bar E, Tadmor Y, Burger Y, Lewinsohn E, et al. 2008.Melon fruit quality: a genomic approach, In: Pitrat M,ed., Cucurbitaceae 2008, Proceedings of the IXthEUCARPIA Meeting on Genetics and Breeding ofCucurbitaceae. INRA. Centre de Recherche d'Avignon.Unité Génétique et Amélioration des Fruits et Légumes,Montfavet (France), Avignon, France. pp. 231-240[23]Kesari R, Trivedi P K, Nath P. 2007. Ethylene-inducedripening in banana evokes expression of defense andstress related genes in fruit tissue. Postharvest Biologyand Technology, 46, 136-143[24]Klee H J. 1993. Ripening physiology of fruit from transgenictomato (Lycopersicon esculentum) plants with reducedethylene synthesis. Plant Physiology, 102, 911-916[25]Li X, Sun H, Pei J, Dong Y, Wang F, Chen H, Sun Y, WangN, Li H, Li Y. 2012. De novo sequencing and comparativeanalysis of the blueberry transcriptome to discoverputative genes related to antioxidants. Gene, 511, 54-61[26]Li Z, Yao L, Yang Y, Li A. 2006. Transgenic approach toimprove quality traits of melon fruit. ScientiaHorticulturae, 108, 268-277[27]Lin B L, Wang J S, Liu H C, Chen R W, Meyer Y, Barakat A,Delseny M. 2001. Genomic analysis of the Hsp70superfamily in Arabidopsis thaliana. Cell StressChaperones, 6, 201-208[28]Lois L M, Rodríguez-Concepción M, Gallego F, Campos N,Boronat A. 2000. Carotenoid biosynthesis duringtomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant Journal, 22,503-513[29]Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N,Guevara-Garcia A, Day P, Raina R, Fedoroff N V. 2003.Characterizing the stress/defense transcriptome ofArabidopsis. Genome Biology, 4, R20.Manrique-Trujillo S M, Ramírez-López A C, Ibarra-LacletteE, Gómez-Lim M A. 2007. Identification of genesdifferentially expressed during ripening of banana.Journal of Plant Physiology, 164, 1037-1050[30]Martin C, Paz-Ares J. 1997. MYB transcription factors inplants. Trends in Genetics, 13, 67-73[31]Matus J, Aquea F, Arce-Johnson P. 2008. Analysis of thegrape MYB R2R3 subfamily reveals expanded winequality-related clades and conserved gene structureorganization across Vitis and Arabidopsis genomes.BMC Plant Biology, 8, 83.Moreno E, Obando J, Dos-Santos N, Fernández-Trujillo J,Monforte A, Garcia-Mas J. 2008. Candidate genes andQTLs for fruit ripening and softening in melon.Theoretical and Applied Genetics, 116, 589-602[32]Nafees A K. 2006. Ethylene Action in Plants. Springer,Heidelberg, Berlin.Nagasawa M, Mori H, Shiratake K, Yamaki S. 2005. Isolationof cDNAs for genes expressed after/during fertilizationand fruit set of melon (Cucumis melo L.). Journal of theJapanese Society for Horticultural Science, 74, 23-30[33]Nakamura Y, Sawada H, Kobayashi S, Nakajima I,Yoshikawa M. 1999. Expression of soybean ?-1,3-endoglucanase cDNA and effect on disease tolerancein kiwifruit plants Plant Cell Reports, 18, 527-532[34]Nieto C, Morales M, Orjeda G, Clepet C, Monfort A,Sturbois B, Puigdomènech P, Pitrat M, Caboche M,Dogimont C, et al. 2006. An eIF4E allele confersresistance to an uncapped and non-polyadenylatedRNA virus in melon. Plant Journal, 48, 452-462[35]Nishiyama K, Guis M, Rose J K C, Kubo Y, Bennett K A,Wangjin L, Kato K, Ushijima K, Nakano R, Inaba A, etal. 2007. Ethylene regulation of fruit softening and cellwall disassembly in Charentais melon. Journal ofExperimental Botany, 58, 1281-1290[36]van Nocker S, Ludwig P. 2003. The WD-repeat proteinsuperfamily in Arabidopsis: conservation anddivergence in structure and function. BMC Genomics,4, 50.[37]Ontivero M, Zamora M G, Salazar S, Ricci J C D, CastagnaroA P. 2011. Isolation of a strawberry gene fragmentencoding an actin depolymerizing factor-like proteinfrom genotypes resistant to Colletotrichum acutatum.Genome, 54, 1041-1044[38]Owino W, Ma B, Sun H, Shoji T, Ezura H. 2007.Characteristics of an ethylene inducible ethylenereceptor Cm-ETR2 in melon fruit. In: Ramina A, ChangC, Giovannoni J, Klee H, Perata P, Woltering E, eds.,Advances in Plant Ethylene Research. Springer,Netherlands. pp. 39-40[39]Palapol Y, Ketsa S, Lin-Wang K, Ferguson I, Allan A. 2009.A MYB transcription factor regulates anthocyaninbiosynthesis in mangosteen (Garcinia mangostana L.)fruit during ripening. Planta, 229, 1323-1334[40]Pech J C, Bouzayen M, Latchq A. 2008. Climacteric fruitripening: ethylene-dependent and independentregulation of ripening pathways in melon fruit. PlantScience, 175, 114-120[41]Pimentel P, Salvatierra A, Moya-León M A, Herrera R. 2010.Isolation of genes differentially expressed duringdevelopment and ripening of Fragaria chiloensis fruitby suppression subtractive hybridization. Journal ofPlant Physiology, 167, 1179-1187[42]Pitrat M. 2002. Gene list for melon. Cucurbit GeneticsCooperative Report, 25, 76-93[43]Portnoy V, Benyamini Y, Bar E, Harel-Beja R, Gepstein S,Giovannoni J, Schaffer A, Burger J, Tadmor Y,Lewinsohn E, et al. 2008. The molecular and biochemicalbasis for varietal variation in sesquiterpene content inmelon (Cucumis melo L.) rinds. Plant MolecularBiology, 66, 647-661[44]Portnoy V, Diber A, Pollock S, Karchi H, Lev S, Tzuri G,Harel-Beja R, Forer R, Portnoy V H, Lewinsohn E, et al.2011. Use of non-normalized, non-amplified cDNA for454-based RNA sequencing of fleshy melon fruit. PlantGenome, 4, 36-46[45]Pua E C, Lee Y C. 2003. Expression of a ripening-relatedcytochrome P450 cDNA in Cavendish banana (Musaacuminata cv. Williams). Gene, 305, 133-140[46]Qiao G, Wen X, Yu L, Ji X. 2012. Identification of differentiallyexpressed genes preferably related to drought responsein pigeon pea (Cajanus cajan) inoculated by arbuscularmycorrhizae fungi (AMF). Acta PhysiologiaePlantarum, 34, 1711-1721[47]Reddy A R, Ramakrishna W, Sekhar A C, Ithal N, Babu P R,Bonaldo M F, Soares M B, Bennetzen J L. 2002. Novelgenes are enriched in normalized cDNA libraries fromdrought-stressed seedlings of rice (Oryza sativa L.subsp. indica cv. Nagina 22). Genome, 45, 204-211[48]Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, Ge X, Kuai B.2007. Identification of a novel chloroplast proteinAtNYE1 regulating chlorophyll degradation during leafsenescence in Arabidopsis. Plant Physiology, 144,1429-1441[49]Rodríguez-Concepción M, Ahumada I, Diez-Juez E, Sauret-Güeto S, Lois L M, Gallego F, Carretero-Paulet L,Campos N, Boronat A. 2001. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase and plastid isoprenoidbiosynthesis during tomato fruit ripening. PlantJournal, 27, 213-222[50]Rose J K, Saladié M, Catalá C. 2004. The plot thickens: newperspectives of primary cell wall modification. CurrentOpinion in Plant Biology, 7, 296-301[51]Schwab W, Vidovich-Rikanati R, Lewinsohn E. 2008.Biosynthesis of plant-derived flavor compounds. PlantJournal, 54, 712-732[52]Segond D, Dellagi A, Lanquar V, Rigault M, Patrit O,Thomine S, Expert D. 2009. NRAMP genes function inArabidopsis thaliana resistance to Erwiniachrysanthemi infection. Plant Journal, 58, 195-207[53]Shinozaki K, Yamaguchi S, Urao T, Koizumi M. 1992.Nucleotide sequence of a gene from Arabidopsisthaliana encoding a myb homologue. Plant MolecularBiology, 19, 493-499[54]Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYBgene family in Arabidopsis thaliana. Current Opinionin Plant Biology, 4, 447-456[55]Sung D Y, Vierling E, Guy C L. 2001. Comprehensiveexpression profile analysis of the Arabidopsis Hsp70gene family. Plant Physiology, 126, 789-800[56]Theologis A. 1992. One rotten apple spoils the wholebushel: the role of ethylene in fruit ripening. Cell, 70,181-184[57]Thomine S, Lelièvre F, Debarbieux E, Schroeder J I, Barbier-Brygoo H. 2003. AtNRAMP3, a multispecific vacuolarmetal transporter involved in plant responses to irondeficiency. Plant Journal, 34, 685-695[58]Timpte C, Lincoln C, Pickett F B, Turner J, Estelle M. 1995.The AXR1 and AUX1 genes of Arabidopsis function inseparate auxin-response pathways. Plant Journal, 8,561-569[59]Torill K U. 2004. Leucine-rich repeat receptor kinases inplants: structure, function, and signal transductionpathways. International Review of Cytology, 234, 1-46[60]Vaid N, Pandey P K, Tuteja N. 2012. Genome-wide analysisof lectin receptor-like kinase family from Arabidopsisand rice. Plant Molecular Biology, 80, 365-388[61]Whitaker B D, Lester G E. 2006. Cloning of phospholipaseDa and lipoxygenase genes CmPLDa1 and CmLOX1and their expression in fruit, floral, and vegetativetissues of ‘Honey Brew’ hybrid Honeydew melon.Journal of the American Society for HorticulturalScience, 131, 544-550[62]Xu B, Su W, Liu J, Wang J, Jin Z. 2007. Differentiallyexpressed cDNAs at the early stage of banana ripeningidentified by suppression subtractive hybridization andcDNA microarray. Planta, 226, 529-539[63]Yahyaoui F E L, Wongs-Aree C, Latché A, Hackett R,Grierson D, Pech J C. 2002. Molecular and biochemicalcharacteristics of a gene encoding an alcohol acyltransferaseinvolved in the generation of aroma volatileesters during melon ripening. European Journal ofBiochemistry, 269, 2359-2366[64]Yang S F, Hoffman N E. 1984. Ethylene biosynthesis andits regulation in higher plant. Annual Review of PlantPhysiology and Plant Molecular Biology, 35, 155-189[65]Zimmermann I M, Heim M A, Weisshaar B, Uhrig J F. 2004.Comprehensive identification of Arabidopsis thalianaMYB transcription factors interacting with R/B-likeBHLH proteins. Plant Journal, 40, 22-34[66]Zhang X, Guo X, Lei C, Cheng Z, Lin Q, Wang J, Wu F,Wang J, Wan J. 2011. Overexpression of SlCZFP1, anovel TFIIIA-type zinc finger protein from tomato,confers enhanced cold tolerance in transgenicArabidopsis and rice. Plant Molecular BiologyReporter, 29, 185-196. |
[1] | LI Bi-feng, ZHU Ya-xin, GU Zhao-bing, CHEN Yuan, LENG Jing, GOU Xiao, FENG Li, LI Qing, XI Dong-mei, MAO Hua-ming, YANG Shu-Li. Screening and characterization of a novel ruminal cellulase gene (Umcel-1) from a metagenomic library of gayal (Bos frontalis)[J]. Journal of Integrative Agriculture, 2016, 15(4): 855-861. |
[2] | ZHAO Yong-ying, WANG Xiang, WEI Li, WANG Jing-xuan, YIN Jun. Characterization of Ppd-D1 alleles on the developmental traits and rhythmic expression of photoperiod genes in common wheat[J]. Journal of Integrative Agriculture, 2016, 15(3): 502-511. |
[3] | XU Yu-chao, HOU Xi-lin, XU Wei-wei, SHEN Lu-lu, Lü Shan-wu, ZHANG Shi-lin, HU Chun-mei. Isolation and characterization of an ERF-B3 gene associated with flower abnormalities in non-heading Chinese cabbage[J]. Journal of Integrative Agriculture, 2016, 15(3): 528-536. |
[4] | TIAN Jia, ZENG Bin, LUO Shu-ping, LI Xiu-gen, WU Bin, LI Jiang. Cloning, localization and expression analysis of two fw2.2-like genes in small- and large-fruited pear species[J]. Journal of Integrative Agriculture, 2016, 15(2): 282-294. |
[5] | LIU Jie-ying, ZHANG Chong, SHAO Qi, TANG Yu-fan, CAO Song-xiao, GUO Xiao-ou, JIN Ya-zhong, QI Hong-yan. Effects of abiotic stress and hormones on the expressions of five 13-CmLOXs and enzyme activity in oriental melon (Cucumis melo var. makuwa Makino)[J]. Journal of Integrative Agriculture, 2016, 15(2): 326-338. |
[6] | LI Hui-fang, SHU Jing-ting, SHAN Yan-ju, CHEN Wen-feng, SONG Chi, XU Wen-juan. Myofiber development during embryonic to neonatal development in duck breeds differing in muscle growth rates[J]. Journal of Integrative Agriculture, 2016, 15(2): 403-413. |
[7] | ZHANG Wei, LI Bei, YU Bin. Genome-wide identification, phylogeny and expression analysis of the SBP-box gene family in maize (Zea mays)[J]. Journal of Integrative Agriculture, 2016, 15(1): 29-41. |
[8] | ZHANG Bai-zhong, KONG Fan-chao, WANG Hua-tang, GAO Xi-wu, ZENG Xin-nian, SHI Xue-yan. Insecticide induction of O-demethylase activity and expression of cytochrome P450 genes in the red imported fire ant (Solenopsis invicta Buren)[J]. Journal of Integrative Agriculture, 2016, 15(1): 135-144. |
[9] | ZOU Xi-ling, ZENG Liu, LU Guang-yuan, CHENG Yong, XU Jin-song, ZHANG Xue-kun. Comparison of transcriptomes undergoing waterlogging at the seedling stage between tolerant and sensitive varieties of Brassica napus L.[J]. Journal of Integrative Agriculture, 2015, 14(9): 1723-1734. |
[10] | HAN Ji-long, YANG Min, GUO Ting-ting, YUE Yao-jing, LIU Jian-bin, NIU Chun-e, WANG Chao-feng, YANG Bo-hui. Molecular characterization of two candidate genes associated with coat color in Tibetan sheep (Ovis arise)[J]. Journal of Integrative Agriculture, 2015, 14(7): 1390-1397. |
[11] | SONG Mu-bo, TANG Lu-ping, ZHANG Xue-lian, BAI Mei, PANG Xue-qun, ZHANG Zhao-qi. Effects of high CO2 treatment on green-ripening and peel senescence in banana and plantain fruits[J]. Journal of Integrative Agriculture, 2015, 14(5): 875-887. |
[12] | CAO Zhen-zhen, PAN Gang, WANG Fu-biao, WEI Ke-su, LI Zhao-wei, SHI Chun-hai, GENG Wei, CHENG Fang-min. Effect of high temperature on the expressions of genes encoding starch synthesis enzymes in developing rice endosperms[J]. Journal of Integrative Agriculture, 2015, 14(4): 642-659. |
[13] | YE Shu-e, LI Fang, LI Xian-bi, HONG Qi-bin, ZHAI Yun-lan, HU Ming-yu, WEI Ting, DENG Sha-sha, PEI Yan, LUO Ming. Over-expression of GhDWF4 gene improved tomato fruit quality and accelerated fruit ripening[J]. Journal of Integrative Agriculture, 2015, 14(10): 1980-1991. |
[14] | LI Wen-xiang, MA Xin-yan, LU Lin, ZHANG Li-yang, LUO Xu-gang. Relative bioavailability of tribasic zinc sulfate for broilers fed a conventional corn-soybean meal diet[J]. Journal of Integrative Agriculture, 2015, 14(10): 2042-2049. |
[15] | Zheng Ke, Jiang Qian-tao, Wei Long, Zhang Xiao-wei, Ma Jian, Chen guo-yue, Wei Yuming, Mitchell Fetch Jennifer, Lu Zhen-xiang, Zheng You-liang. Characterization of starch morphology, composition, physicochemical properties and gene expressions in oat[J]. Journal of Integrative Agriculture, 2015, 14(1): 20-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||