棉花生长发育模型及其在我国的研究和应用进展
侯彤瑜,郝婷丽,王海江,张泽,吕新

Advances in Cotton Growth and Development Modelling and Its Applications in China
TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ
表1 国外经典棉花生理生态过程模型要点比较
Table 1 Comparisons of four classical cotton growth and development models
模型要素 Model components GOSSYM[5] Cotton2K[10] OZCOT[6] CSM-CROPGRO-Cotton[8]
模型输入
Input
环境
Environment
日尺度气象数据;土壤初始水、氮含量
Daily weather data, initial soil water and nitrogen content
小时尺度气象数据;土壤初始水、氮含量
Hourly weather data, initial soil water and nitrogen content
日尺度气象数据;土壤初始水、氮含量
Daily weather data, initial soil water and nitrogen content
日尺度气象数据;土壤初始水、氮含量
Daily weather data, initial soil water and nitrogen content
品种
Cultivar
品种遗传参数
Genetic coefficients
品种遗传参数
Genetic coefficients
品种遗传参数
Genetic coefficients
品种遗传参数
Genetic coefficients
栽培
Management operations
播期、密度、灌溉、施肥、化调、脱叶
Planting date, plant density, irrigation, fertilizer, growth regulators and defoliation
播期、密度、滴灌、施肥、耕作、化调、脱叶
Planting date, plant density, drip irrigation, fertilizer, tillage, growth regulators and defoliation
播期、密度、灌溉、施肥、脱叶
Planting date, plant density, irrigation, fertilizer and defoliation
播期、密度、灌溉、施肥、留茬、耕作、脱叶
Planting date, plant density, irrigation, fertilizer, residue, tillage and defoliation
生育进程
Phenology
基于日平均温度和碳氮供需平衡调节生育进程
Develop based on daily thermal time and C:N ratio
基于小时尺度平均温度和碳氮供需平衡调节生育进程
Develop based on hourly thermal time and C:N ratio
基于出苗到现蕾所需积温的经验值计算现蕾时间
Based on the empirical accumulating day degrees between sowing and the appearance of the first square
基于生理日数模拟生育进程
Develop based on physiological degree days
物质积累和分配
Dry matter accumulation and allocation
光合
Photosynthesis
基于群体冠层对太阳辐射的截获效率计算潜在光合
Canopy-level radiation
interception
基于群体冠层对太阳辐射的截获效率计算潜在光合
Canopy-level radiation
interception
基于群体冠层对太阳辐射的截获效率计算潜在光合
Canopy-level radiation
interception
将单叶小时尺度的潜在光合整合为日尺度的冠层光合
Leaf-level biochemistry
呼吸
Respiration
基于光强、温度及生物量的经验公式
Uses an empirical function of respiration based on light, air temperature and biomass
由器官的物质构成确定生长呼吸;由光合生产量确定维持呼吸
Calculates growth and maintenance respiration and photorespiration
基于果节数量和温度调节因子的经验公式
Uses empirical functions of respiration based on fruiting site count and air temperature
由器官的物质构成确定生长呼吸;由光合生产量确定维持呼吸
Calculates growth and maintenance respiration
分配
Partitioning
根据各类器官的需求将积累的干物质按比例分配
Allocates carbon to individual growing organs based on the organ's contribution to the total demand
根据各类器官的需求将积累的干物质按比例分配
Allocates carbon to individual growing organs based on the organ's contribution to the total demand
将积累的干物质分配给每个棉铃,以估计棉铃的生长
Allocates carbon to cohort pools for developing bolls
按照生殖器官优先原则和各器官生长需求实现干物质动态分配
Reproductive tissues have first priority, then allocates carbon to single pools for leaves, stems and roots
器官生长
Organ growth
受温度、水分、氮素及碳水化合物供应状态调控的潜在生长
Potential growth with the stresses related to air temperature, water, C, and N
受温度、水分、氮素及碳水化合物供应状态调控的潜在生长
Potential growth with the stresses related to air temperature, water, C, and N
受温度、水分、氮素及碳水化合物供应状态调控的潜在生长
Potential growth with the stresses related to air temperature, water, C, and N
受温度、水分、氮素及碳水化合物供应状态调控的潜在生长
Potential growth with the stresses related to air temperature, water, C, and N
蕾铃脱落
Shedding of buds and bolls
根据蕾铃的碳氮供应模拟生理性脱落;兼顾虫害、阴雨对蕾铃脱落的影响
Physiological shedding based on the carbon and nitrogen stress, and the other shedding based on the insects or weather stresses
根据蕾铃的碳氮供应模拟生理性脱落;兼顾虫害、阴雨对蕾铃脱落的影响
Physiological shedding based on the carbon and nitrogen stress, and the other shedding based on the insects or weather stress
根据棉铃承载力与实际载铃量的比值确定棉铃脱落状态
Shedding based on the ratio of load to carrying capacity
当干物质分配无法满足生殖器官生长需求时即发生脱落
Shedding occurs when dry matter allocation cannot meet the growth needs of reproductive organs
模型要素 Model components GOSSYM[5] Cotton2K[10] OZCOT[6] CSM-CROPGRO-Cotton[8]
水分平衡
Water Balance
土壤
Soil
2D RHIZOS模型
2D RHIZOS model
2D RHIZOS 模型
2D RHIZOS model
Ritchie水分平衡
Ritchie model
Ritchie水分平衡
Ritchie model
蒸散
ET
Ritchie水分平衡
Ritchie model
CIMIS彭曼公式
CIMIS Penman model
Ritchie水分平衡
Ritchie model
FAO-56彭曼公式
FAO-56
氮素平衡
Nitrogen Balance
2D RHIZOS模型
2D RHIZOS model
对2D RHIZOS模型土壤氮素动态平衡模块进行了优化
Optimized 2D RHIZOS model
基于氮素池实现土壤-棉花-器官间氮素动态平衡
Dynamic nitrogen pools
由土壤-棉花氮平衡模块实现土壤-棉花-器官间氮素动态平衡
Based on the soil carbon and nitrogen balance sub module
模型输出
Output
棉花产量、株式图、水分利用效率、氮肥利用效率等
Yield, plant maps, WUE, NUE
棉花产量、株式图、水分利用效率、氮肥利用效率等
Yield, plant maps, WUE, NUE
棉花产量、载铃量、水分利用效率、氮肥利用效率等
Yield, boll load, plant maps, WUE, NUE
棉花产量、生物量、载铃量、水分利用效率、氮肥利用效率等
Yield, biomass, boll load, plant maps, WUE, NUE
应用情况
Application
机理性强,输入参数多,使用前需进行参数校验,在美国植棉区已经广泛应用[1]
Mainly applied in the cotton belt of U.S.[1]
针对干旱半干旱环境和栽培措施的优化使其在以色列[10]、新疆[28]等植棉区应用较多
Mainly applied in arid and semi-arid environments such as Israel[10] and Xinjiang China[28]
重点关注棉铃生长和脱落,对底层生理考虑较少,受澳大利亚官方支持应用广泛[2]
Mainly applied in Australia [2]
模块化组织提升了开发应用便捷性,目前在美国东南植棉区应用较多[2,32]
Mainly appliied in in the southeastern U.S. [2,32]