模型输入 Input | 环境 Environment | 日尺度气象数据;土壤初始水、氮含量 Daily weather data, initial soil water and nitrogen content | 小时尺度气象数据;土壤初始水、氮含量 Hourly weather data, initial soil water and nitrogen content | 日尺度气象数据;土壤初始水、氮含量 Daily weather data, initial soil water and nitrogen content | 日尺度气象数据;土壤初始水、氮含量 Daily weather data, initial soil water and nitrogen content |
品种 Cultivar | 品种遗传参数 Genetic coefficients | 品种遗传参数 Genetic coefficients | 品种遗传参数 Genetic coefficients | 品种遗传参数 Genetic coefficients |
栽培 Management operations | 播期、密度、灌溉、施肥、化调、脱叶 Planting date, plant density, irrigation, fertilizer, growth regulators and defoliation | 播期、密度、滴灌、施肥、耕作、化调、脱叶 Planting date, plant density, drip irrigation, fertilizer, tillage, growth regulators and defoliation | 播期、密度、灌溉、施肥、脱叶 Planting date, plant density, irrigation, fertilizer and defoliation | 播期、密度、灌溉、施肥、留茬、耕作、脱叶 Planting date, plant density, irrigation, fertilizer, residue, tillage and defoliation |
生育进程 Phenology | | 基于日平均温度和碳氮供需平衡调节生育进程 Develop based on daily thermal time and C:N ratio | 基于小时尺度平均温度和碳氮供需平衡调节生育进程 Develop based on hourly thermal time and C:N ratio | 基于出苗到现蕾所需积温的经验值计算现蕾时间 Based on the empirical accumulating day degrees between sowing and the appearance of the first square | 基于生理日数模拟生育进程 Develop based on physiological degree days |
物质积累和分配 Dry matter accumulation and allocation | 光合 Photosynthesis | 基于群体冠层对太阳辐射的截获效率计算潜在光合 Canopy-level radiation interception | 基于群体冠层对太阳辐射的截获效率计算潜在光合 Canopy-level radiation interception | 基于群体冠层对太阳辐射的截获效率计算潜在光合 Canopy-level radiation interception | 将单叶小时尺度的潜在光合整合为日尺度的冠层光合 Leaf-level biochemistry |
呼吸 Respiration | 基于光强、温度及生物量的经验公式 Uses an empirical function of respiration based on light, air temperature and biomass | 由器官的物质构成确定生长呼吸;由光合生产量确定维持呼吸 Calculates growth and maintenance respiration and photorespiration | 基于果节数量和温度调节因子的经验公式 Uses empirical functions of respiration based on fruiting site count and air temperature | 由器官的物质构成确定生长呼吸;由光合生产量确定维持呼吸 Calculates growth and maintenance respiration |
分配 Partitioning | 根据各类器官的需求将积累的干物质按比例分配 Allocates carbon to individual growing organs based on the organ's contribution to the total demand | 根据各类器官的需求将积累的干物质按比例分配 Allocates carbon to individual growing organs based on the organ's contribution to the total demand | 将积累的干物质分配给每个棉铃,以估计棉铃的生长 Allocates carbon to cohort pools for developing bolls | 按照生殖器官优先原则和各器官生长需求实现干物质动态分配 Reproductive tissues have first priority, then allocates carbon to single pools for leaves, stems and roots |
器官生长 Organ growth | | 受温度、水分、氮素及碳水化合物供应状态调控的潜在生长 Potential growth with the stresses related to air temperature, water, C, and N | 受温度、水分、氮素及碳水化合物供应状态调控的潜在生长 Potential growth with the stresses related to air temperature, water, C, and N | 受温度、水分、氮素及碳水化合物供应状态调控的潜在生长 Potential growth with the stresses related to air temperature, water, C, and N | 受温度、水分、氮素及碳水化合物供应状态调控的潜在生长 Potential growth with the stresses related to air temperature, water, C, and N |
蕾铃脱落 Shedding of buds and bolls | | 根据蕾铃的碳氮供应模拟生理性脱落;兼顾虫害、阴雨对蕾铃脱落的影响 Physiological shedding based on the carbon and nitrogen stress, and the other shedding based on the insects or weather stresses | 根据蕾铃的碳氮供应模拟生理性脱落;兼顾虫害、阴雨对蕾铃脱落的影响 Physiological shedding based on the carbon and nitrogen stress, and the other shedding based on the insects or weather stress | 根据棉铃承载力与实际载铃量的比值确定棉铃脱落状态 Shedding based on the ratio of load to carrying capacity | 当干物质分配无法满足生殖器官生长需求时即发生脱落 Shedding occurs when dry matter allocation cannot meet the growth needs of reproductive organs |
模型要素 Model components | GOSSYM[5] | Cotton2K[10] | OZCOT[6] | CSM-CROPGRO-Cotton[8] |
水分平衡 Water Balance | 土壤 Soil | 2D RHIZOS模型 2D RHIZOS model | 2D RHIZOS 模型 2D RHIZOS model | Ritchie水分平衡 Ritchie model | Ritchie水分平衡 Ritchie model |
蒸散 ET | Ritchie水分平衡 Ritchie model | CIMIS彭曼公式 CIMIS Penman model | Ritchie水分平衡 Ritchie model | FAO-56彭曼公式 FAO-56 |
氮素平衡 Nitrogen Balance | | 2D RHIZOS模型 2D RHIZOS model | 对2D RHIZOS模型土壤氮素动态平衡模块进行了优化 Optimized 2D RHIZOS model | 基于氮素池实现土壤-棉花-器官间氮素动态平衡 Dynamic nitrogen pools | 由土壤-棉花氮平衡模块实现土壤-棉花-器官间氮素动态平衡 Based on the soil carbon and nitrogen balance sub module |
模型输出 Output | | 棉花产量、株式图、水分利用效率、氮肥利用效率等 Yield, plant maps, WUE, NUE | 棉花产量、株式图、水分利用效率、氮肥利用效率等 Yield, plant maps, WUE, NUE | 棉花产量、载铃量、水分利用效率、氮肥利用效率等 Yield, boll load, plant maps, WUE, NUE | 棉花产量、生物量、载铃量、水分利用效率、氮肥利用效率等 Yield, biomass, boll load, plant maps, WUE, NUE |
应用情况 Application | | 机理性强,输入参数多,使用前需进行参数校验,在美国植棉区已经广泛应用[1] Mainly applied in the cotton belt of U.S.[1] | 针对干旱半干旱环境和栽培措施的优化使其在以色列[10]、新疆[28]等植棉区应用较多 Mainly applied in arid and semi-arid environments such as Israel[10] and Xinjiang China[28] | 重点关注棉铃生长和脱落,对底层生理考虑较少,受澳大利亚官方支持应用广泛[2] Mainly applied in Australia [2] | 模块化组织提升了开发应用便捷性,目前在美国东南植棉区应用较多[2,32] Mainly appliied in in the southeastern U.S. [2,32] |