基于叶片反射光谱估测水稻氮营养指数
徐浩聪,姚波,王权,陈婷婷,朱铁忠,何海兵,柯健,尤翠翠,吴小文,郭爽爽,武立权

Determination of Suitable Band Width for Estimating Rice Nitrogen Nutrition Index Based on Leaf Reflectance Spectra
XU HaoCong,YAO Bo,WANG Quan,CHEN TingTing,ZHU TieZhong,HE HaiBing,KE Jian,YOU CuiCui,WU XiaoWen,GUO ShuangShuang,WU LiQuan
表6 水稻NNI(y)与不同光谱指数(x)的定量关系(n=160)及模型检验效果(n=249)
Table 6 Quantitative relationships between NNI (y) and different spectral index (x) in rice (n=249)
叶位
Leaf position
光谱指数
Spectral index
回归方程
Regression equation
模型精度
Model precision (R2)
预测精度
Prediction precision (R2)
均方根误
RMSE
相对误差
RE (%)
顶一叶(L1 SR(R900,R540 y=0.2488x+0.1267 0.390 0.443 0.187 14.7
SR[AR(900±50),AR(540±10)] y=0.2454x+0.1307 0.388 0.441 0.187 14.7
顶二叶(L2 SR(R900,R540 y=0.3943x-0.3199 0.657 0.707 0.136 12.2
SR[AR(900±50),AR(540±10)] y=0.3896x-0.3154 0.654 0.706 0.136 12.2
顶三叶(L2 SR(R900,R540 y=0.3019x-0.0364 0.557 0.731 0.130 11.6
SR[AR(900±50),AR(540±10)] y=0.2988x-0.0344 0.556 0.729 0.130 11.6
顶二、顶三光谱平均(L23 SR(R900,R540 y=0.3556x-0.1997 0.625 0.740 0.128 11.5
SR[AR(900±50),AR(540±10)] y=0.3517x-0.1967 0.624 0.740 0.128 11.5
顶一、顶二、顶三光谱平均(L123 SR(R900,R540 y=0.3645x-0.2208 0.618 0.720 0.133 11.2
SR[AR(900±50),AR(540±10)] y=0.3602x-0.217 0.616 0.718 0.133 11.3