土壤质量评价指标体系的构建及评价方法
李鑫,张文菊,邬磊,任意,张骏达,徐明岗

Advance in Indicator Screening and Methodologies of Soil Quality Evaluation
LI Xin,ZHANG WenJu,WU Lei,REN Yi,ZHANG JunDa,XU MingGang
表1 最小数据集MDS构建方法、原理与优缺点
Table 1 Principles, advantages and disadvantages of the MDS construction method
构建方法
Construction method
原理
Principle
优点
Advantage
缺点
Disadvantage
参考文献
Reference
主成分分析
PCA
根据荷载大小进行筛选,可结合Norm值与指标间相关性
Selecting according to loadings, also can be used in conjunction with the correlationship and Norm value
可降维以减少变量,体现原始变量 信息
Reducing dimensionality to reduce variables and reflecting original information
因子载荷的符号有正负性,综合评价函数意义不够明确
Unclear signs of factor loads, unclear meaning of comprehensive evaluation function
[25-27]
聚类分析
CA
通过R型聚类,将评价指标分类
Classifying indicators through R-type cluster
直观,结论形式简明
Intuitive and concise conclusion
评价指标较多时,不易获得结果
Hard to get result
with numberous indicators
[28]
主成分-逐步回归分析
PC-SRA
将PCA筛选的指标引入回归分析,通过显著性检验进行筛选
Regression analysis with indicators screened by PCA, selecting by significance test
可保留影响最显著的指标,预测精度较高
Retaining indicators with the most significant impact, high prediction accuracy
当变量对因变量影响小时,结果不稳定
Hard to get stable result when independent variables have a small influence on the dependent variable
[29]
典范对应分析
CCA
将对应分析与多元回归分析相结合,每一步计算均与环境因子进行回归
Combining correspondence analysis and multiple regression analysis, regressioning with environmental factors in each step of calculation
可将样方、对象与环境因子的排序结果表示在同一排序图上
Displaying the sorting results of plots, objects and environmental factors on the same sorting chart
多应用于土壤指标对植物群落组成的影响,应用范围较小
Mostly used in the influence of soil indicators on the of plant communities, a small application range
[30-31]
偏最小二乘回归分析
PLSRA
通过典型相关分析来筛选自变量,提取偏最小二乘因子
Selecting independent variables through canonical correlation analysis and extracting partial least squares factors
可提供更合理回归模型,直观体现原始变量信息
providing a more reasonable regression model to directly reflect the original variable information
指标较少时不适用
Not applicable with few indicators
[32]
专家经验法
Expert experience
根据经验和研究区域实际情况进行筛选
Selecting based on experience and actual situation of the research area
筛选的指标的综合反映性较强
Selecting indicators with comprehensive reflectivity
主观随意性大,评价结果存在差 异性
Different evaluation results caused by large subjectivity
[33]