玉米茎秆抗倒伏遗传的研究进展
王夏青,宋伟,张如养,陈怡凝,孙轩,赵久然

Genetic Research Advances on Maize Stalk Lodging Resistance
WANG XiaQing,SONG Wei,ZHANG RuYang,CHEN YiNing,SUN Xuan,ZHAO JiuRan
表1 玉米茎秆抗倒伏相关性状遗传定位统计
Table 1 The summary of genetic studies for stalk lodging resistance traits in maize
序号
Order
性状
Trait
材料
Material
定位方法
Mapping method
主要结果
Main result
文献
Reference
1 茎秆弯曲强度
Stalk bending strength
216个RIL家系(B73×Ce03005)
216 RILs (B73×Ce03005)
复合区间作图
CIM
微效多基因遗传特征
Polygenic with minor effect inheritance
[10]
2 茎皮穿刺强度
Rind penetrometer strength
4692个NAM家系,及
196个IBM的RIL家系
4692 NAM, 196 IBM RILs
连锁分析、关联分析
Linkage analysis, GWAS
鉴定到与苯丙烷和纤维素合成相关的位点
QTLs were related to the synthesis of phenylpropane and cellulose
[11]
3 茎皮穿刺强度
Rind penetrometer strength
RIL家系(H127R× Chang7- 2)、(B73×By804)
RILs (H127R× Chang7-2), (B73×By804)
复合区间作图
CIM
候选基因与细胞壁组分相关
Candidate genes were related to cell wall components
[12]
4 茎粗、茎秆弯曲强度、茎皮穿刺强度
Stalk diameter, stalk bending strength, rind penetrometer strength
257个自交系
257 inbred lines
多位点关联分析
Multi-locus association analysis
茎秆强度的改良可通过多个优良基因聚合实现
The improvement of stalk strength can be achieved through the accumulation of multiple favorable alleles
[13]
5 茎秆弯曲强度、茎皮穿刺强度
Stalk bending strength, rind penetrometer strength
189个RIL家系 (B73×Ki11)
189 RILs (B73×Ki11)
复合区间作图、关联
分析
CIM, GWAS
鉴定到一个控制茎秆强度的基因stiff1
stiff1 dominates stalk strength
[30]
6 茎秆柔韧度
Stalk flexibility
313个F2:3家系(J724×J724A1)
313 F2:3 (J724×J724A1)
混合群体分离分析
BSA
定位到1个控制茎秆柔韧度的QTL位点
One QTL was identified to control stalk flexibility
[14]
7 纤维素、半纤维、木质素
Cellulose, hemicellulose, lignin
368个自交系
368 inbred lines
关联分析
GWAS
候选基因涉及细胞壁代谢、转录因子、蛋白激酶
Candidate genes involve cell wall metabolism, transcription factors, protein kinases
[31]
8 酸性洗涤纤维、中性洗涤纤维
Acid detergent fiber, neutral detergent fiber
368个自交系
368 inbred lines
关联分析
GWAS
鉴定了ZmC3H2,提出56个候选基因
ZmC3H2 and 56 candidate genes were identified
[32]
9 6个细胞壁成分
6 cell wall components
188个RIL家系 (B73 ×By804)
188 RILs (B73×By804)
完备区间作图
ICIM
一半以上的QTL表型变异解释率超过10%
More than half of the QTLs explained more than 10% phenotypic variation
[33]
10 木质素、葡萄糖和木糖
Lignin, glucose and xylose
263个IBM家系,以及
282个自交系
263 IBM, 282 inbred lines
连锁分析、关联分析
Linkage analysis, GWAS
鉴定到11个与木质素和含糖量有关的QTL
11 QTLs were related to lignin and sugar content
[34]
11 木质素及其单体含量
Lignin and its monomer content
242个RIL家系(F838×F286)
242 RILs (F838×F286)
复合区间作图
CIM
定位了80个QTL,包含7个热点区
80 QTLs were mapped, including 7 hot spots
[35]
12 细胞壁成分
Cell wall components
11个群体
11 populations
一致性QTL分析
Meta-QTL analysis
鉴定到与细胞壁组成、秸秆消化率相关的QTL
QTLs related to cell wall composition and straw digestibility were identified
[36]
13 糖分含量
Stalk sugar content
202个RIL家系(YXD053×Y6-1)
202 RILs (YXD053×Y6-1)
复合区间作图
CIM
QTL之间有较强的上位性
QTLs with strong epistasis effect
[37]
14 株高与穗位高比例
Ratio of ear height to plant height
183个热带玉米自交系
183 tropical maize inbred lines
单倍型关联分析
Haplotype GWAS
单倍型关联分析更适用于倒伏性状的定位
Haplotype GWAS was more efficient for the mapping of lodging-related traits
[38]
15 茎粗
Stalk diameter
17个群体
17 populations
一致性QTL分析
Meta-QTL analysis
20个茎粗的Meta-QTLs
20 Meta-QTLs were related to stalk diameter
[39]
16 玉米最上节茎秆的维管束数目
Vascular bundle number at the uppermost internode of maize stalk
866个BC2S3,HIF材料
866 BC2S3, HIF
多QTL模型
Multiple QTL mapping
维管束数目受大量微效的QTL控制
Vascular bundle number was dominated by many small-effect QTLs
[40]
17 茎皮厚度、维管束数目、密度、茎粗
Rind thickness, vascular bundle number and density, stalk diameter
942个玉米自交系
942 inbred lines
关联分析
GWAS
鉴定到3个控制维管束密度的QTL位点
Three loci were associated with vascular bundle density
[41]
18 30个维管束性状
30 vascular traits
480个玉米自交系
480 inbred lines
多位点关联分析
Multi-locus association analysis
鉴定到84个维管束表型候选基因
84 candidate genes were related to vascular bundle phenotype
[42]