1 | 茎秆弯曲强度 Stalk bending strength | 216个RIL家系(B73×Ce03005) 216 RILs (B73×Ce03005) | 复合区间作图 CIM | 微效多基因遗传特征 Polygenic with minor effect inheritance | [10] |
2 | 茎皮穿刺强度 Rind penetrometer strength | 4692个NAM家系,及 196个IBM的RIL家系 4692 NAM, 196 IBM RILs | 连锁分析、关联分析 Linkage analysis, GWAS | 鉴定到与苯丙烷和纤维素合成相关的位点 QTLs were related to the synthesis of phenylpropane and cellulose | [11] |
3 | 茎皮穿刺强度 Rind penetrometer strength | RIL家系(H127R× Chang7- 2)、(B73×By804) RILs (H127R× Chang7-2), (B73×By804) | 复合区间作图 CIM | 候选基因与细胞壁组分相关 Candidate genes were related to cell wall components | [12] |
4 | 茎粗、茎秆弯曲强度、茎皮穿刺强度 Stalk diameter, stalk bending strength, rind penetrometer strength | 257个自交系 257 inbred lines | 多位点关联分析 Multi-locus association analysis
| 茎秆强度的改良可通过多个优良基因聚合实现 The improvement of stalk strength can be achieved through the accumulation of multiple favorable alleles | [13] |
5 | 茎秆弯曲强度、茎皮穿刺强度 Stalk bending strength, rind penetrometer strength | 189个RIL家系 (B73×Ki11) 189 RILs (B73×Ki11) | 复合区间作图、关联 分析 CIM, GWAS | 鉴定到一个控制茎秆强度的基因stiff1 stiff1 dominates stalk strength | [30] |
6 | 茎秆柔韧度 Stalk flexibility | 313个F2:3家系(J724×J724A1) 313 F2:3 (J724×J724A1) | 混合群体分离分析 BSA | 定位到1个控制茎秆柔韧度的QTL位点 One QTL was identified to control stalk flexibility | [14] |
7 | 纤维素、半纤维、木质素 Cellulose, hemicellulose, lignin | 368个自交系 368 inbred lines | 关联分析 GWAS | 候选基因涉及细胞壁代谢、转录因子、蛋白激酶 Candidate genes involve cell wall metabolism, transcription factors, protein kinases | [31] |
8 | 酸性洗涤纤维、中性洗涤纤维 Acid detergent fiber, neutral detergent fiber | 368个自交系 368 inbred lines | 关联分析 GWAS | 鉴定了ZmC3H2,提出56个候选基因 ZmC3H2 and 56 candidate genes were identified | [32] |
9 | 6个细胞壁成分 6 cell wall components | 188个RIL家系 (B73 ×By804) 188 RILs (B73×By804) | 完备区间作图 ICIM | 一半以上的QTL表型变异解释率超过10% More than half of the QTLs explained more than 10% phenotypic variation | [33] |
10 | 木质素、葡萄糖和木糖 Lignin, glucose and xylose | 263个IBM家系,以及 282个自交系 263 IBM, 282 inbred lines | 连锁分析、关联分析 Linkage analysis, GWAS | 鉴定到11个与木质素和含糖量有关的QTL 11 QTLs were related to lignin and sugar content | [34] |
11 | 木质素及其单体含量 Lignin and its monomer content | 242个RIL家系(F838×F286) 242 RILs (F838×F286) | 复合区间作图 CIM | 定位了80个QTL,包含7个热点区 80 QTLs were mapped, including 7 hot spots | [35] |
12 | 细胞壁成分 Cell wall components | 11个群体 11 populations | 一致性QTL分析 Meta-QTL analysis | 鉴定到与细胞壁组成、秸秆消化率相关的QTL QTLs related to cell wall composition and straw digestibility were identified | [36] |
13 | 糖分含量 Stalk sugar content | 202个RIL家系(YXD053×Y6-1) 202 RILs (YXD053×Y6-1) | 复合区间作图 CIM | QTL之间有较强的上位性 QTLs with strong epistasis effect | [37] |
14 | 株高与穗位高比例 Ratio of ear height to plant height | 183个热带玉米自交系 183 tropical maize inbred lines | 单倍型关联分析 Haplotype GWAS | 单倍型关联分析更适用于倒伏性状的定位 Haplotype GWAS was more efficient for the mapping of lodging-related traits | [38] |
15 | 茎粗 Stalk diameter | 17个群体 17 populations | 一致性QTL分析 Meta-QTL analysis | 20个茎粗的Meta-QTLs 20 Meta-QTLs were related to stalk diameter | [39] |
16 | 玉米最上节茎秆的维管束数目 Vascular bundle number at the uppermost internode of maize stalk | 866个BC2S3,HIF材料 866 BC2S3, HIF | 多QTL模型 Multiple QTL mapping | 维管束数目受大量微效的QTL控制 Vascular bundle number was dominated by many small-effect QTLs | [40] |
17 | 茎皮厚度、维管束数目、密度、茎粗 Rind thickness, vascular bundle number and density, stalk diameter | 942个玉米自交系 942 inbred lines | 关联分析 GWAS | 鉴定到3个控制维管束密度的QTL位点 Three loci were associated with vascular bundle density | [41] |
18 | 30个维管束性状 30 vascular traits | 480个玉米自交系 480 inbred lines | 多位点关联分析 Multi-locus association analysis | 鉴定到84个维管束表型候选基因 84 candidate genes were related to vascular bundle phenotype | [42] |