集成土壤-环境关系与机器学习的干旱区土壤属性数字制图
|
张振华,丁建丽,王敬哲,葛翔宇,王瑾杰,田美玲,赵启东
|
Digital Soil Properties Mapping by Ensembling Soil-Environment Relationship and Machine Learning in Arid Regions
|
ZhenHua ZHANG,JianLi DING,JingZhe WANG,XiangYu GE,JinJie WANG,MeiLing TIAN,QiDong ZHAO
|
|
表3 土壤属性建模集与验证集性能比较
|
Table 3 Performance comparison between soil attribute Calibration and Validation
|
|
土壤属性 Soil Attribute | 模型 Model | 建模集 Calibration | 验证集 Validation | R2 | ρc | RMSE | R2 | ρc | RMSE | pH | RF | 0.7929 | 0.7786 | 0.1681 | 0.6779 | 0.6084 | 0.2182 | | Cubist | 0.5182 | 0.6356 | 0.2308 | 0.4383 | 0.5805 | 0.2252 | | Bagging | 0.6389 | 0.6409 | 0.2092 | 0.5829 | 0.6159 | 0.2214 | | MLR | 0.4154 | 0.4559 | 0.2971 | 0.3004 | 0.4683 | 0.2445 | SSC | RF | 0.9067 | 0.9219 | 2.6680 | 0.7945 | 0.8377 | 3.1803 | | Cubist | 0.8820 | 0.9237 | 2.9190 | 0.7135 | 0.6194 | 7.5771 | | Bagging | 0.7417 | 0.8331 | 4.2156 | 0.6974 | 0.7791 | 3.9743 | | MLR | 0.6478 | 0.7687 | 4.0600 | 0.5050 | 0.6670 | 5.7829 | SOM | RF | 0.8565 | 0.7872 | 3.3215 | 0.7472 | 0.7009 | 3.5456 | | Cubist | 0.5204 | 0.5774 | 4.4070 | 0.4795 | 0.4305 | 5.4758 | | Bagging | 0.7653 | 0.7551 | 3.6085 | 0.6402 | 0.5494 | 4.2667 | | MLR | 0.3835 | 0.5559 | 5.0483 | 0.3250 | 0.5151 | 4.8424 |
|
|
|