建模方法 Modeling approach | 光谱参量 Spectral parameter | 估测模型 Estimating model | 建模精度 Modeling accuracy | 验证精度 Verification accuracy | R2 | RMSE | R2 | RMSE | 逐步回归 Stepwise regression | bG | Y=18.609×bG+0.169 | 0.458 | 1.267 | 0.401 | 0.882 | bG,bR | Y=12.546×bG+19.044×bR-1.120 | 0.599 | 1.089 | 0.600 | 0.729 | bG,bR,bNIR | Y=8.360×bG+15.775×bR-9.912×bNIR +3.116 | 0.673 | 0.983 | 0.650 | 0.847 | bG,bR,bNIR,bREG | Y=7.988×bG+12.282×bR-8.525×bNIR+6.979×bREG+2.101 | 0.694 | 0.951 | 0.648 | 0.771 | NDVI | Y=-7.507×NDVI+6.308 | 0.620 | 1.061 | 0.668 | 0.685 | NDVI,RVI | Y=-13.261×NDVI+0.69×RVI+6.734 | 0.715 | 0.918 | 0.692 | 0.897 | NDVI,RVI,SI | Y=-10.287×NDVI+0.651×RVI+13.486×SI+3.843 | 0.756 | 0.850 | 0.710 | 0.907 | 偏最小二乘法 Partial least squares | bG,bR,bNIR,bREG | Y=6.021×bG+6.5986×bR+6.2650×bNIR-4.1737×bREG+1.3260 | 0.689 | 1.114 | 0.719 | 1.177 | NDVI,RVI,SI | Y=-9.4774×NDVI+0.4794×RVI+3.0747×SI+5.0604 | 0.734 | 0.954 | 0.784 | 0.769 | BP神经网络 The BP neural network | bG,bR,bNIR,bREG | — | — | — | 0.714 | 0.893 | NDVI,RVI,SI | — | — | — | 0.753 | 0.993 | 支持向量机 Support vector machine | bG,bR,bNIR,bREG | — | 0.804 | 0.590 | 0.467 | 0.473 | NDVI,RVI,SI | — | 0.835 | 0.353 | 0.640 | 0.512 |
|