基于Sentinel卫星及无人机多光谱的滨海冬小麦种植区土壤盐分反演研究——以黄三角垦利区为例
奚雪,赵庚星,高鹏,崔昆,李涛

Inversion of Soil Salinity in Coastal Winter Wheat Growing Area Based on Sentinel Satellite and Unmanned Aerial Vehicle Multi-Spectrum— A Case Study in Kenli District of the Yellow River Delta
XI Xue,ZHAO GengXing,GAO Peng,CUI Kun,LI Tao
表5 基于无人机多光谱的土壤盐分估测模型
Table 5 Soil salinity estimation model based on multi-spectral of UAV
建模方法
Modeling approach
光谱参量
Spectral parameter
估测模型
Estimating model
建模精度
Modeling accuracy
验证精度
Verification accuracy
R2 RMSE R2 RMSE
逐步回归
Stepwise regression
bG Y=18.609×bG+0.169 0.458 1.267 0.401 0.882
bG,bR Y=12.546×bG+19.044×bR-1.120 0.599 1.089 0.600 0.729
bG,bR,bNIR Y=8.360×bG+15.775×bR-9.912×bNIR +3.116 0.673 0.983 0.650 0.847
bG,bR,bNIR,bREG Y=7.988×bG+12.282×bR-8.525×bNIR+6.979×bREG+2.101 0.694 0.951 0.648 0.771
NDVI Y=-7.507×NDVI+6.308 0.620 1.061 0.668 0.685
NDVI,RVI Y=-13.261×NDVI+0.69×RVI+6.734 0.715 0.918 0.692 0.897
NDVI,RVI,SI Y=-10.287×NDVI+0.651×RVI+13.486×SI+3.843 0.756 0.850 0.710 0.907
偏最小二乘法
Partial least squares
bG,bR,bNIR,bREG Y=6.021×bG+6.5986×bR+6.2650×bNIR-4.1737×bREG+1.3260 0.689 1.114 0.719 1.177
NDVI,RVI,SI Y=-9.4774×NDVI+0.4794×RVI+3.0747×SI+5.0604 0.734 0.954 0.784 0.769
BP神经网络
The BP neural network
bG,bR,bNIR,bREG 0.714 0.893
NDVI,RVI,SI 0.753 0.993
支持向量机
Support vector machine
bG,bR,bNIR,bREG 0.804 0.590 0.467 0.473
NDVI,RVI,SI 0.835 0.353 0.640 0.512