基于区域亮度自适应校正算法的脐橙表面缺陷检测
|
张明,王腾,李鹏,邓烈,郑永强,易时来,吕强,孙荣荣
|
Surface Defect Detection of Navel Orange Based on Region Adaptive Brightness Correction Algorithm
|
ZHANG Ming,WANG Teng,LI Peng,DENG Lie,ZHENG YongQiang,YI ShiLai,LÜ Qiang,SUN RongRong
|
|
表1 基于区域亮度自适应校正算法脐橙表面缺陷检测结果
|
Table 1 Detection result of navel orange surface defect based on region brightness adaptive correction
|
|
表皮类型 Epidermis type | 样本数 Number of samples | 正确识别样本数 Number of correctly recognized samples | 误判样本数 Number of misjudged samples | 准确率 Detection rate (%) | 误判率 False rate (%) | 正常果Normal fruit | 64 | 59 | 5 | 92.2 | 7.8 | 溃疡病果Canker spot | 29 | 29 | 0 | 100.0 | 0.0 | 蓟马虫果Thrips scarring | 44 | 42 | 2 | 95.5 | 4.5 | 介壳虫果Scale infestation | 37 | 36 | 1 | 97.3 | 2.7 | 虫伤果Insect injury | 38 | 36 | 2 | 94.7 | 5.3 | 黑星病果Blackspot fruit | 35 | 34 | 1 | 97.1 | 2.9 | 风伤果Wind scarring fruit | 61 | 57 | 4 | 93.4 | 6.6 | 炭疽病果Anthracnose fruit | 26 | 26 | 0 | 100.0 | 0.0 | 裂伤果Dehiscent fruit | 22 | 22 | 0 | 100.0 | 0.0 | 合计Total | 356 | 341 | 15 | 95.8 | 4.2 |
|
|
|