基于机器视觉的稻茬麦单茎穗高通量表型分析
|
丁启朔,李海康,孙克润,何瑞银,汪小旵,刘富玺,厉翔
|
High-Throughput Phenotyping of Individual Wheat Stem and Ear Traits with Machine Vision
|
QiShuo DING,HaiKang LI,KeRun SUN,RuiYin HE,XiaoChan WANG,FuXi LIU,Xiang LI
|
|
表7 小麦麦穗形态参数与单穗籽粒产量回归模型拟合结果
|
Table 7 Fitting results of wheat single ear morphological parameters and ear-derived grain yield regression model
|
|
品种 Variety | 模型 Model | 系数Coefficient | | 决定系数R2 | F值 F value | P值 P value | 误差方差估计 Error variance estimation | a0 | a1 | a2 | a3 | … | 宁麦13 Ningmai 13 | 线性Linear | -0.067 | 0.014 | 0.011 | 0.000 | … | 0.337 | 7.796 | 0.000 | 0.063 | 二次Quadratic | 0.566 | 0.000 | 0.000 | 0.000 | … | 0.340 | 3.695 | 0.005 | 0.067 | | 拓展Extended | 0.315 | -0.001 | -0.017 | 0.000 | … | 0.434 | 3.408 | 0.003 | 0.062 | | 指数Exponential | 4.788 | 0.165 | 0.109 | -0.023 | … | 0.281 | 5.979 | 0.002 | 0.069 | 鲁原502 Luyuan 502 | 线性Linear | 0.080 | 0.016 | -0.021 | 0.000 | … | 0.447 | 12.399 | 0.000 | 0.096 | 二次Quadratic | 0.620 | 0.000 | -0.001 | 0.000 | … | 0.496 | 11.049 | 0.000 | 0.090 | 拓展Extended | 0.468 | 0.000 | -0.013 | 0.000 | … | 0.618 | 6.298 | 0.000 | 0.078 | | 指数Exponential | 4.800 | 0.128 | -0.021 | 0.032 | … | 0.416 | 10.920 | 0.000 | 0.102 | 郑麦9023 Zhengmai 9023 | 线性Linear | 1.892 | 0.006 | -0.152 | 0.003 | … | 0.235 | 4.107 | 0.012 | 0.201 | 二次Quadratic | 0.713 | 0.000 | -0.001 | 0.000 | … | 0.243 | 3.131 | 0.025 | 0.204 | 拓展Extended | 3.413 | 0.005 | -0.023 | 0.000 | … | 0.413 | 2.322 | 0.034 | 0.187 | | 指数Exponential | 5.160 | 0.259 | -0.016 | 0.034 | … | 0.283 | 3.850 | 0.009 | 0.193 |
|
|
|