基于机器视觉的稻茬麦单茎穗高通量表型分析
|
丁启朔,李海康,孙克润,何瑞银,汪小旵,刘富玺,厉翔
|
High-Throughput Phenotyping of Individual Wheat Stem and Ear Traits with Machine Vision
|
QiShuo DING,HaiKang LI,KeRun SUN,RuiYin HE,XiaoChan WANG,FuXi LIU,Xiang LI
|
|
表6 小麦单茎穗茎秆重、叶重和穗重与单穗籽粒产量回归模型拟合结果
|
Table 6 Fitting results of wheat single stem weight, sperm-carrying leaf weight & ear weight and ear-derived grain yield regression model
|
|
品种 Variety | 模型 Model | 系数Coefficient | | 决定系R2 | F值 F value | P值 P value | 误差方差估计 Error variance estimation | a0 | a1 | a2 | a3 | … | 宁麦13 Ningmai 13 | 线性Linear | -0.065 | -0.046 | 0.120 | 0.778 | | 0.903 | 141.909 | 0.000 | 0.009 | 二次Quadratic | 0.452 | 0.137 | 0.038 | 0.263 | … | 0.918 | 80.005 | 0.000 | 0.008 | | 拓展Extended | 0.452 | 1.915 | -4.978 | 0.099 | … | 0.925 | 54.835 | 0.000 | 0.008 | | 指数Exponential | 3.182 | 0.002 | -0.003 | 0.072 | … | 0.885 | 117.718 | 0.000 | 0.011 | 鲁原502 Luyuan 502 | 线性Linear | -0.045 | 0.049 | 0.092 | 0.654 | | 0.861 | 94.656 | 0.000 | 0.024 | 二次Quadratic | 0.511 | -0.243 | 0.361 | 0.159 | … | 0.840 | 80.046 | 0.000 | 0.027 | | 拓展Extended | 0.518 | -0.727 | -2.887 | 0.021 | … | 0.856 | 42.714 | 0.000 | 0.027 | | 指数Exponential | 2.924 | 0.011 | 0.004 | 0.064 | … | 0.681 | 2.788 | 0.000 | 0.061 | 郑麦9023 Zhengmai 9023 | 线性Linear | 0.059 | -0.032 | -0.446 | 0.792 | | 0.863 | 96.222 | 0.000 | 0.033 | 二次Quadratic | 0.512 | -0.025 | -0.204 | 0.207 | … | 0.867 | 100.115 | 0.000 | 0.032 | 拓展Extended | 0.502 | 2.883 | 1.752 | 0.169 | … | 0.872 | 48.618 | 0.000 | 0.033 | | 指数Exponential | 3.242 | 0.003 | -0.021 | 0.081 | … | 0.788 | 56.975 | 0.000 | 0.054 |
|
|
|