基于机器视觉的稻茬麦单茎穗高通量表型分析
丁启朔,李海康,孙克润,何瑞银,汪小旵,刘富玺,厉翔

High-Throughput Phenotyping of Individual Wheat Stem and Ear Traits with Machine Vision
QiShuo DING,HaiKang LI,KeRun SUN,RuiYin HE,XiaoChan WANG,FuXi LIU,Xiang LI
表6 小麦单茎穗茎秆重、叶重和穗重与单穗籽粒产量回归模型拟合结果
Table 6 Fitting results of wheat single stem weight, sperm-carrying leaf weight & ear weight and ear-derived grain yield regression model
品种
Variety
模型
Model
系数Coefficient 决定系R2 F
F value
P
P value
误差方差估计
Error variance estimation
a0 a1 a2 a3
宁麦13
Ningmai 13
线性Linear -0.065 -0.046 0.120 0.778 0.903 141.909 0.000 0.009
二次Quadratic 0.452 0.137 0.038 0.263 0.918 80.005 0.000 0.008
拓展Extended 0.452 1.915 -4.978 0.099 0.925 54.835 0.000 0.008
指数Exponential 3.182 0.002 -0.003 0.072 0.885 117.718 0.000 0.011
鲁原502
Luyuan 502
线性Linear -0.045 0.049 0.092 0.654 0.861 94.656 0.000 0.024
二次Quadratic 0.511 -0.243 0.361 0.159 0.840 80.046 0.000 0.027
拓展Extended 0.518 -0.727 -2.887 0.021 0.856 42.714 0.000 0.027
指数Exponential 2.924 0.011 0.004 0.064 0.681 2.788 0.000 0.061
郑麦9023
Zhengmai 9023
线性Linear 0.059 -0.032 -0.446 0.792 0.863 96.222 0.000 0.033
二次Quadratic 0.512 -0.025 -0.204 0.207 0.867 100.115 0.000 0.032
拓展Extended 0.502 2.883 1.752 0.169 0.872 48.618 0.000 0.033
指数Exponential 3.242 0.003 -0.021 0.081 0.788 56.975 0.000 0.054