基于机器视觉的稻茬麦单茎穗高通量表型分析
|
丁启朔,李海康,孙克润,何瑞银,汪小旵,刘富玺,厉翔
|
High-Throughput Phenotyping of Individual Wheat Stem and Ear Traits with Machine Vision
|
QiShuo DING,HaiKang LI,KeRun SUN,RuiYin HE,XiaoChan WANG,FuXi LIU,Xiang LI
|
|
表5 小麦单穗穗重与单穗籽粒产量回归模型拟合结果
|
Table 5 Fitting results of wheat single ear weight and ear-derived grain yield regression model
|
|
品种 Variety | 模型 Model | 系数Coefficient | 决定系数 R2 | F值 F value | P值 P value | 误差方差估计 MSp | a0 | a1 | 宁麦13 Ningmai 13 | 线性Linear | -0.061 | 0.783 | 0.902 | 443.105 | 0.000 | 0.009 | 二次Quadratic | 0.459 | 0.275 | 0.914 | 248.683 | 0.000 | 0.008 | | 指数Exponential | 3.183 | 0.071 | 0.882 | 357.326 | 0.000 | 0.010 | 鲁原502 Luyuan 502 | 线性Linear | 0.002 | 0.673 | 0.859 | 293.457 | 0.000 | 0.023 | 二次Quadratic | 0.584 | 0.168 | 0.862 | 146.316 | 0.000 | 0.023 | | 指数Exponential | 3.186 | 0.069 | 0.670 | 97.358 | 0.000 | 0.060 | 郑麦9023 Zhengmai 9023 | 线性Linear | -0.099 | 0.695 | 0.844 | 259.356 | 0.000 | 0.036 | 二次Quadratic | 0.454 | 0.191 | 0.858 | 290.450 | 0.000 | 0.033 | | 指数Exponential | 2.921 | 0.073 | 0.744 | 139.620 | 0.000 | 0.059 |
|
|
|