基于机器视觉的稻茬麦单茎穗高通量表型分析
|
丁启朔,李海康,孙克润,何瑞银,汪小旵,刘富玺,厉翔
|
High-Throughput Phenotyping of Individual Wheat Stem and Ear Traits with Machine Vision
|
QiShuo DING,HaiKang LI,KeRun SUN,RuiYin HE,XiaoChan WANG,FuXi LIU,Xiang LI
|
|
表1 小麦单茎穗地上部生物量与单穗籽粒产量回归模型
|
Table 1 The regression model between aboveground biomass per stem-panicle and ear-derived grain yield of wheat
|
|
拟合模型 Fitting model | 模型类型 Model type | 模型方程 Model equation | 单穗质量与单穗籽粒产量 Ear-derived weight and grain yield | 线性Linear | SEY=a0+a1×SEW | 二次Quadratic | SEY=a0+a1×SEW2 | 指数Exponential | ln(SEY)=a0+a1×ln(SEW)2 | 地上部各器官生物量与单穗 籽粒产量 Biomass of different organs and ear-derived grain yield | 线性Linear | SEY=a0+a1×SLW+a2×SSW+a3×SEW | 二次Quadratic | SEY=a0+a1×SLW2+a2×SSW2+a3×SEW2 | 拓展Extended | SEY=a0+a1×SLW2+a2×SSW2+a3×SEW2+a4×SLW×SSW+a5×SLW×SEW+a6×SSW×SEW | 指数Exponential | ln(SEY)=a0+a1×ln(SLW)2+a2×ln(SSW)2+a3×ln(SEW)2 |
|
|
|