基于机器视觉的稻茬麦单茎穗高通量表型分析
丁启朔,李海康,孙克润,何瑞银,汪小旵,刘富玺,厉翔

High-Throughput Phenotyping of Individual Wheat Stem and Ear Traits with Machine Vision
QiShuo DING,HaiKang LI,KeRun SUN,RuiYin HE,XiaoChan WANG,FuXi LIU,Xiang LI
表1 小麦单茎穗地上部生物量与单穗籽粒产量回归模型
Table 1 The regression model between aboveground biomass per stem-panicle and ear-derived grain yield of wheat
拟合模型 Fitting model 模型类型 Model type 模型方程 Model equation
单穗质量与单穗籽粒产量
Ear-derived weight and grain yield
线性Linear SEY=a0+a1×SEW
二次Quadratic SEY=a0+a1×SEW2
指数Exponential ln(SEY)=a0+a1×ln(SEW)2
地上部各器官生物量与单穗
籽粒产量
Biomass of different organs and ear-derived grain yield
线性Linear SEY=a0+a1×SLW+a2×SSW+a3×SEW
二次Quadratic SEY=a0+a1×SLW2+a2×SSW2+a3×SEW2
拓展Extended SEY=a0+a1×SLW2+a2×SSW2+a3×SEW2+a4×SLW×SSW+a5×SLW×SEW+a6×SSW×SEW
指数Exponential ln(SEY)=a0+a1×ln(SLW)2+a2×ln(SSW)2+a3×ln(SEW)2