基于机器学习的滴灌玉米光合响应特征
|
刘慧芳,贺正,贾彪,刘志,李振洲,付江鹏,慕瑞瑞,康建宏
|
Photosynthetic Response Characteristics of Maize Under Drip Irrigation Based on Machine Learning
|
HuiFang LIU,Zheng HE,Biao JIA,Zhi LIU,ZhenZhou LI,JiangPeng FU,RuiRui MU,JianHong KANG
|
|
表2 2种计算分析方法对玉米光响应曲线的模拟精度
|
Table 2 Simulation accuracy of two kinds of calculation methods on maize light response curve
|
|
年份 Year | 方法 Method | 处理 Treatment | RMSE | MAE | R2 | 2017 | 非线性回归分析法 Nonlinear regression analysis
| K0 | 2.030 | 1.869 | 0.990 | K1 | 1.319 | 1.079 | 0.992 | K2 | 1.147 | 0.899 | 0.993 | K3 | 0.828 | 0.656 | 0.995 | K4 | 0.610 | 0.498 | 0.994 | K5 | 0.446 | 0.379 | 0.995 | 网格搜索法 Grid search method | K0 | 1.335 | 1.096 | 0.993 | K1 | 1.312 | 1.092 | 0.993 | K2 | 0.952 | 0.622 | 0.994 | K3 | 0.708 | 0.617 | 0.995 | K4 | 0.546 | 0.504 | 0.996 | K5 | 0.662 | 0.557 | 0.995 | 2018 | 非线性回归分析法 Nonlinear regression analysis
| K0 | 1.827 | 1.445 | 0.987 | K1 | 1.731 | 1.323 | 0.991 | K2 | 0.872 | 0.733 | 0.993 | K3 | 0.858 | 0.717 | 0.994 | K4 | 0.644 | 0.566 | 0.996 | K5 | 0.312 | 0.226 | 0.997 | 网格搜索法 Grid search method | K0 | 1.487 | 1.350 | 0.991 | K1 | 0.975 | 0.860 | 0.993 | K2 | 0.839 | 0.716 | 0.993 | K3 | 0.774 | 0.620 | 0.995 | K4 | 0.750 | 0.637 | 0.996 | K5 | 0.330 | 0.315 | 0.996 |
|
|
|