基于超像素分割的田间小麦穗数统计方法
杜颖,蔡义承,谭昌伟,李振海,杨贵军,冯海宽,韩东

Field Wheat Ears Counting Based on Superpixel Segmentation Method
DU Ying,CAI YiCheng,TAN ChangWei,LI ZhenHai,YANG GuiJun,FENG HaiKuan,HAN Dong
表1 不同类型分类器特征
Table 1 Different types of classifier features
分类器类型
Classifier type
预测速度
Prediction speed
内存占用
Memory usage
解释性
Interpretability
模型灵活性
Model flexibility
线性支持向量机
linSVM
二分类:快
Binary: Fast
多分类:中
Multiclass: Medium
中等
Medium
简单
Easy

Low
在类之间进行简单的线性分隔
Makes a simple linear separation between classes
二次多项式支持向量机
quaSVM
二分类:快
Binary: Fast
多分类:慢
Multiclass: Slow
二分类:中等
Binary: Medium
多分类:大
Multiclass: Large
困难
Hard
中等
Medium
三次多项式支持向量机
cubSVM
二分类:快
Binary: Fast
多分类:慢
Multiclass: Slow
二分类:中等
Binary: Medium
多分类:大
Multiclass: Large
困难
Hard
中等
Medium
细高斯支持向量机
finGSVM
二分类:快
Binary: Fast
多分类:慢
Multiclass: Slow
二分类:中等
Binary: Medium
多分类:大
Multiclass: Large
困难
Hard
高,随内核刻度设置而减小
High, creases with kernel scale setting
类之间精细区分,内核刻度为sqrt(P)/4
Makes finely detailed distinctions between classes, with kernel scale set to sqrt(P)/4
中度高斯支持向量机
medGSVM
二分类:快
Binary: Fast
多分类:慢
Multiclass: Slow
二分类:中等
Binary: Medium
多分类:大
Multiclass: Large
困难
Hard
中等
Medium
中度区分,内核刻度为sqrt(P)
Medium distinctions, with kernel scale set to sqrt(P)
粗高斯支持向量机
coaGSVM
二分类:快
Binary: Fast
多分类:慢
Multiclass: Slow
二分类:中等
Binary: Medium
多分类:大
Multiclass: Large
困难
Hard

Low
在类之间粗区分,内核刻度为sqrt(P)*4,其中P为预测因子数
Makes coarse distinctions between classes, with kernel scale set to sqrt(P)*4, where P is the number of predictors
细 K最近邻
finKNN

Medium
中等
Medium
困难
Hard
类之间细微差异区分,邻域数设为1
Finely detailed distinctions between classes. The number of neighbors is set to 1
中度 K最近邻
medKNN

Medium
中等
Medium
困难
Hard
类之间中等差异区分,邻域数设为10
Medium distinctions between classes. The number of neighbors is set to 10
粗 K最近邻
coaKNN

Medium
中等
Medium
困难
Hard
类之间粗略差异区分,邻域数设为100
Coarse distinctions between classes. The number of neighbors is set to 100
余弦 K最近邻
cosKNN

Medium
中等
Medium
困难
Hard
使用余弦距离度量,在类之间中等区分,邻域数设为10
Medium distinctions between classes, using a cosine distance metric. The number of neighbors is set to 10
三次多项式 K最近邻
cubKNN

Slow
中等
Medium
困难
Hard
使用立方距离度量,在类之间中等区分,邻域数设为10
Medium distinctions between classes, using a cubic distance metric. The number of neighbors is set to 10
加权 K最近邻
weiKNN

Medium
中等
Medium
困难
Hard
使用权重距离度量,在类之间中等区分,邻域数设为10
Medium distinctions between classes, using a distance weight. The number of neighbors is set to 10