线性支持向量机 linSVM | 二分类:快 Binary: Fast 多分类:中 Multiclass: Medium | 中等 Medium | 简单 Easy | 低 Low 在类之间进行简单的线性分隔 Makes a simple linear separation between classes |
二次多项式支持向量机 quaSVM | 二分类:快 Binary: Fast 多分类:慢 Multiclass: Slow | 二分类:中等 Binary: Medium 多分类:大 Multiclass: Large | 困难 Hard | 中等 Medium |
三次多项式支持向量机 cubSVM | 二分类:快 Binary: Fast 多分类:慢 Multiclass: Slow | 二分类:中等 Binary: Medium 多分类:大 Multiclass: Large | 困难 Hard | 中等 Medium |
细高斯支持向量机 finGSVM | 二分类:快 Binary: Fast 多分类:慢 Multiclass: Slow | 二分类:中等 Binary: Medium 多分类:大 Multiclass: Large | 困难 Hard | 高,随内核刻度设置而减小 High, creases with kernel scale setting 类之间精细区分,内核刻度为sqrt(P)/4 Makes finely detailed distinctions between classes, with kernel scale set to sqrt(P)/4 |
中度高斯支持向量机 medGSVM | 二分类:快 Binary: Fast 多分类:慢 Multiclass: Slow | 二分类:中等 Binary: Medium 多分类:大 Multiclass: Large | 困难 Hard | 中等 Medium 中度区分,内核刻度为sqrt(P) Medium distinctions, with kernel scale set to sqrt(P) |
粗高斯支持向量机 coaGSVM | 二分类:快 Binary: Fast 多分类:慢 Multiclass: Slow | 二分类:中等 Binary: Medium 多分类:大 Multiclass: Large | 困难 Hard | 低 Low 在类之间粗区分,内核刻度为sqrt(P)*4,其中P为预测因子数 Makes coarse distinctions between classes, with kernel scale set to sqrt(P)*4, where P is the number of predictors |
细 K最近邻 finKNN | 中 Medium | 中等 Medium | 困难 Hard | 类之间细微差异区分,邻域数设为1 Finely detailed distinctions between classes. The number of neighbors is set to 1 |
中度 K最近邻 medKNN | 中 Medium | 中等 Medium | 困难 Hard | 类之间中等差异区分,邻域数设为10 Medium distinctions between classes. The number of neighbors is set to 10 |
粗 K最近邻 coaKNN | 中 Medium | 中等 Medium | 困难 Hard | 类之间粗略差异区分,邻域数设为100 Coarse distinctions between classes. The number of neighbors is set to 100 |
余弦 K最近邻 cosKNN | 中 Medium | 中等 Medium | 困难 Hard | 使用余弦距离度量,在类之间中等区分,邻域数设为10 Medium distinctions between classes, using a cosine distance metric. The number of neighbors is set to 10 |
三次多项式 K最近邻 cubKNN | 慢 Slow | 中等 Medium | 困难 Hard | 使用立方距离度量,在类之间中等区分,邻域数设为10 Medium distinctions between classes, using a cubic distance metric. The number of neighbors is set to 10 |
加权 K最近邻 weiKNN | 中 Medium | 中等 Medium | 困难 Hard | 使用权重距离度量,在类之间中等区分,邻域数设为10 Medium distinctions between classes, using a distance weight. The number of neighbors is set to 10 |