

Appendix A Cold plasma discharge power and applied voltage

Appendix B Voltage and current waveforms obtained at different applied voltages of cold

plasma

Appendix C Relative viability of Sertoli cells (SCs) exposed at different discharge powers for

Discharge power (W)	Exposure duration (s)	Relative cell viability of control (%)		
Control ¹⁾	0	$100.00 \pm 0.00^{*}$		
2.4 ¹⁾	20	105.42 ± 5.63^{a}		
	40	103.72 ± 6.49^{a}		
	60	$84.45\pm4.00^{\text{b}}$		
5.6 ¹⁾	20	$86.35\pm4.04^{\text{b}}$		
	40	$72.73 \pm 1.83^{\circ}$		
	60	68.47 ± 3.19^{cd}		
9.1 ¹⁾	20	69.40 ± 4.17^{cd}		
	40	$57.11 \pm 3.10^{ ext{ef}}$		
	60	53.41 ± 3.43^{efg}		
12.5 ¹⁾	20	61.37 ± 5.55^{de}		
	40	50.31 ± 2.47^{fg}		
	60	47.55 ± 3.97^9		
Discharge power (W) ²⁾				
2.4		97.86 ± 11.64		
5.6		75.85 ± 8.75		
9.1		59.97 ± 8.19		
12.5		53.08 ± 7.74		
Exposure duration (s) $^{3)}$				
20		80.64 ± 18.39		
40		70.97 ± 21.88		
60		63.47 ± 15.43		
P-value				
Discharge power		<0.0001		
Exposure duration		0.095		
Power × Duration		<0.0001		

20, 40, and 60 s (Exp. 2 (1))

 $^{1)}$ Data are represented as the mean \pm SD of 3 replicates (n=3).

 $^{2)}$ Data are represented as the mean \pm SD of 9 replicates (n=9).

 $^{3)}$ Data are represented as the mean \pm SD of 12 replicates (n=12).

Within the same column, different lowercase letters indicate significant differences (P<0.05). *, different

from all treatment groups (P<0.05).

MiRNA name	Sequence (5'to3')
Agomir NC	F: UUCUCCGAACGUGUCACGUTT
Agomin NC	R: ACGUGACACGUUCGGAGAATT
Antagomir NC	F: CAGUACUUUUGUGUAGUACAA
	F: UCUGUUCUUAAGGAGGCUGAGGC
mik-7450 agomir	R: CUCAGCCUCCUUAAGAACAGAUU
miR-7450 antagomir	F: GCCUCAGCCUCCUUAAGAACAGA
miR 100 acomir	F: AACCCGUAGAUCCGAACUUGUG
	R: CAAGUUCGGAUCUACGGGUUUU
miR-100 antagomir	F: CACAAGUUCGGAUCUACGGGUU

Appendix D Sequences for microRNA (miRNA) agomir and antagomir

NC, negative control.

Appendix E miRNA transfection efficiency in SCs. Chicken SCs were transfected with mock (Lipofectamine[®] RNAiMAX Regent only), carboxyfluorescein (FAM)-labeled miRNA agomir NC, and FAM-labeled antagomir NC. Imaging of SCs with the green fluorescence showed successful transfected cells. Scale bar: 100 μm.

Gene	Sequence number	Sequence	Product Annealing length (bp)Temperature (°C)		Sequence (5'to3')	
		position				
β-actin	NM_205518.1	625-818	194	57	F: GTGCGTGACATCAAGGAGAAGC	
					R: CCACAGGACTCCATACCCAAGA	
1000	NM_001101829.1	28-157	130	57	F: CGAGGATCTCAGAAGGTTGC	
NOX4					R: GAGCATTCACCAGATGAGCA	
NRF2	NM_205117.1	484-619	136	57	F: AAAACGCTGAACCACCAATC	
					R: GCTGGAGAAGCCTCATTGTC	
KEAD1	KU321503.1	1227-1485	259	57	F: GTATCACAGCAGCGTGGAGA	
NEAF I					R: GGCGTAGATGCAGTTGTTGA	
500	NM_205064.1	106-278	173	55	F: ATTACCGGCTTGTCTGATGG	
30D					R: CCTCCCTTTGCAGTCACATT	
CAT		4007 4070	040		F: CTCATTCCAGTGGGCAAGAT	
CAT	NIVI_001031213.2	1007-1270	210	55	R: GTAGGGGCAATTCACAGGAA	
		252 474	100	55	F: ATGTTCGAGAAGTGCGAGGT	
GFX	NIVI_001277055.2	555-474	122	55	R: ATGATGTACTGCGGGTTGGT	
	NM_001271932.1	358-545	188	56	F: ACAAGGTGGTTTGGGCACTA	
FNDAT		330-343	100		R: TCTCATCAACAGAACGGCCA	
	XM_426543.5	414-551	138	56	F: TTTCACCTTTGTGTGCCCCA	
PRDX3					R: TTGCGCGGGGGTATTTATCCA	
PRDX4	XM_001233999.3	595-733	139	56	F: TGCACTTAGGGGCCTTTTCA	
					R: TTCTCCATGCTTGTCCGTGT	
	NM_001039329.2	189-340	152	58	F: TGAGTTCAGCAAACGCAACG	
FNDAU					R: GCTCTCGGTCCTTATCAGCG	
ΔΤΡ5Δ1	NM_204286.1	1207-1364	158	57	F: GGTATCCGTCCAGCCATCAA	
AIFSAI					R: GCATCCAAATCAGACCCAAACT	
ATP5R	NM_001031391.2	482-637	156	57	F: GCCCCATCACAACGAAACAG	
AIFJD					R: CGCCTCCAAACAAACCAATC	
ATP5C1	NM_001278096.1	272-411	140	57	F: ATTAAGGCACCCGAGGACAA	
			140	57	R: ACTTCCTTCCCTGCATTGGA	
AMPKα1	NM_001039603.1	1443-1632	190	58	F: AATCATTGAAACGAAGTCTGGGA	
					R: TGTATGACTGCCTGGTCTTGGA	
mTOR	XM_417614.4	119-309	191	57	F: TGAAGGGGTCAAGGCAATCC	
					R: GGCGAGCAGTGGTTGTGGAT	
U6	NR_003027.2	66-85	20	60	F: CGCAAGGATGACACGCAAAT	
miR-7450	MI0024118	1-20	20	60	F: TCTGTTCTTAAGGAGGCTGA	
miR-100	MI0001258	13-32	20	60	F: AACCCGTAGATCCGAACTTG	

Appendix F Primer sequences for the RT-PCR

NOX4, nicotinamide adenine dinucleotide phosphate oxidase 4; NRF2, nuclear factor erythroid 2-related factor 2; KEAP1, kelch-like ECH-associated protein 1; SOD, superoxide dismutase; CAT, catalase; *GPx*, glutathione peroxidase; *PRDX*, peroxiredoxin; *ATP5A1*, ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1; *ATP5B*, ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide; *ATP5C1*, ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 1; *AMPKa1*, adenosine monophosphate-activated protein kinase α 1; *mTOR*, mammalian target of rapamycin.

	Target	Name of antibody	Source and reference		Species raised in; clonality	Dilution used
Primary antibodies	NRF2	Anti-NRF2	Santa Biotechnology Texas, USA	Cruz , Dallas,	Mouse; monoclonal	1:200
	KEAP1	Anti-KEAP1	Santa Biotechnology	Cruz	Mouse; monoclonal	1:200
	PRDX4	Peroxiredoxin 4	LifeSpan BioSciences, Seattle, WA, USA		Mouse; monoclonal	1:200
	ATP5A	Anti-ATP5A	Abcam		Mouse; monoclonal	1:250
	ρ-ΑΜΡΚα1	Anti-phospho-AMPK alpha1 (Thr172)	Cell Technology, MA, USA	Signaling Danvers,	Rabbit; polyclonal	1:1,000
	AMPKα1	Anti-AMPK alpha1	Cell Technology	Signaling	Rabbit; polyclonal	1:1,000
	p-mTOR	Anti-phospho-mTOR (Ser2448)	Abcam		Rabbit; polyclonal	1:1,000
	mTOR	Anti-mTOR	Abcam		Rabbit; polyclonal	1:1,000
	Beta-actin	Anti-beta actin	Santa Biotechnology	Cruz	Rabbit; polyclonal	1:1,000
Secondary antibodies	Goat IgG	Anti-rabbit IgG H&L (HRP)	Abcam		Goat; polyclonal	1: 5,000
	Goat IgG	Anti-mouse IgG-HRP	Santa Biotechnology	Cruz	Goat; polyclonal	1: 5,000

Appendix G Primary and secondary antibodies used in study and their respective dilutions

Appendix H Relations between cold plasma exposure and relative SC viability (Exp. 2 (2) and (3)). (A) Relations between discharge power and relative SC viability. (B) Relations between exposure duration and relative SC viability.

Appendix I Growth status of SCs exposed at 2.4 W of cold plasma for 30 s twice with different interval times (Exp. 2 (5)). Scale bar: 300 µm.

Appendix J Relative viability of SCs exposed to 2.4 W of cold plasma for 30 s with an interval time of 6 h twice, three times or four times (Exp. 2 (6)). Data are represented as the mean \pm SD of 3 replicates (n=3). Different lowercase letters indicate significant differences (*P*<0.05).

Appendix K Growth status of SCs transfected with agomir and antagomir of miR-7450-5p

and miR-100-5p, and miR-7450-5p antagomir and miR-100-5p agomir groups treated with

2.4 W of cold plasma for 30 s twice with an interval time of 6 h (Exp. 6). Scale bar: 300 µm.

Appendix L Anti-Mullerian hormone (AMH), oil red O, and alkaline phosphatase (AP) staining of immature chicken SCs cultured *in vitro* and their negative controls (Exp. 1). For AMH staining, scale bar: 10 μ m; for oil red O staining, scale bar: 50 μ m; for AP staining, scale bar: 50 μ m.

Appendix M Western blot analysis of the protein levels of NRF2, KEAP1, PRDX4, ATP5A, p-AMPKα1 (Thr172), AMPKα1, p-mTOR (Ser2448), and mTOR in SCs exposed to 2.4 W of cold plasma for 30 s twice with an interval time of 6 h (Exp. 3, 4, 5). Uncropped immunoblot scans for Fig.5-A. The grouping of gels/blots cropped from different gels. All blots were visualized with 5 min exposure time.

Appendix N Western blot analysis of the protein levels of p-AMPKα1 (Thr172) and AMPKα1 in SCs trasfected with miR-7450-5p agomir and antagomir in the presence or absence of double cold plasma treatment at 2.4 W for 30 s with an interval time of 6 h (Exp. 8). Uncropped immunoblot scans for Fig.11-A. The grouping of gels/blots cropped from different gels. All blots were visualized with 5 min exposure time.

Appendix O Western blot analysis of the protein levels of p-mTOR (Ser2448) and mTOR in SCs transfected with agomir and antagomir of miR-100-5p, and miR-100-5p agomir group treated with 2.4 W of cold plasma for 30 s twice with an interval time of 6 h (Exp. 8). Uncropped immunoblot scans for Fig.11-C. The grouping of gels/blots cropped from different gels. All blots were visualized with 5 min exposure time.