
Appendix A Solve the utility function 

The expected utility function can be written as 
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Since , we have ( ) ( ) [ ( )]U w p f Q C Q     , where

. To solve equation (I-1), or to get farmer’s optimal fertilizer 

use level, we should have . From equation (I-1), we have 

1 1( ) ( ) ( ) [ ( )] '( )
dU

w p f Q f Q C Q C Q
dQ

             

Plug ( ) A*QBx f Q  and  into the above equation to get 
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If we set 0
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 , we get 1 1 1( ) [ ] ( )B Bw p AQ ABQ c cQ       . Solving this 

equation, we get  
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Since , the equation (I-3) can be re-written as 

1 ( lnp)1

* ( 1) ( 1)1( ) ( ) eB BB
c

Q
A B



 


               (I-4)

( ) (1) 1w q w 

( ) exp[ ( ln ) ]w p p   

0
dU

dQ


( ) c*Qy C Q  

( ) exp[ ( ln ) ]w p p   



Appendix B The impact of risk preference on fertilizer use 

As shown in equation (I-3), the farmer’s optimal level of fertilizer use is 
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In order to have a good understanding of this equation, we define ( )
( )

H p
w p B


 . 

Since 0  , , and ( ) exp[ ( ln ) ] 0w p p     ，we have H(p)>0. 

We then define . Since c>0, B>0, and A>0, we have 0k  . Then optimal 

fertilizer use level equation can be re-written as 
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 In order to show the impact of farmer’s risk preference on the optimal level of 

fertilizer use, we get  

   (II-2) 
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In the following, we are going to discuss the sign of lnH(p) for two cases. 

 

Case I. B   

If B  , we have 1
B


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Case II. B   

Before discussing the sign of ln ( )H p , we need to discuss the magnitude of p. If

, we have
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To summarize, we have 

 

*

0
dQ

d
 , if  

*

0
dQ

d
 , if  and          (II-3)

   

1

(ln )

e
B

p







( ln ) ln
B

p 


 

( ) exp[( ln ) ]
( )

H p p
w p B B

 
    ln ( )H p

1

(ln )

e
B

p







1

ln (ln )
B

p 


 

1

(ln )
B

B

B and p e












  

B 

1

(ln )

e
B

p









 


