Appendix

Appendix A. Calculations of LAI_{sun} and LAI_{shd}.

We refer to Chen *et al.* (1999), Liu *et al.* (1999) and Norman (1982) for calculating LAI_{sun} and LAI_{shd} , such that:

$$LAI_{sun} = 2\cos\theta \left(1 - \exp(-0.5 \times \Omega \times LAI/\cos\theta)\right) , \qquad (A1)$$

$$LAI_{shd} = LAI - LAI_{sun},$$
(A2)

$$\theta = \frac{\pi}{8} + \frac{3}{4}\theta_{\rm n} \,, \tag{A3}$$

$$\cos\theta_{n} = \sin\left(-23.45 \times \frac{\pi}{180} \cos\left(\frac{360(\text{DoY}+10)}{365}\right)\right) \sin\varphi + \cos\left(-23.45 \times \frac{\pi}{180} \cos\left(\frac{360(\text{DoY}+10)}{365}\right)\right) \cos\varphi \right), \quad (A4)$$

where θ and θ_n denotes the mean solar zenith angle during the daytime and solar zenith angle at noon (rad); DoY denotes the Julian day; and φ denotes the local latitude (rad).

Appendix B. Calculations of Q_{sun} and Q_{shd} .

We refer to Norman (1982), Chen *et al.* (1999) and Liu *et al.* (1999) for obtaining Q_{shd} and Q_{sun} in the daytime:

$$C = 0.07 \times \Omega \times Q_{\rm dir} \times (1.1 - 0.1 \text{LAI}) \times \exp(-\cos\theta), \qquad (B1)$$

$$Q_{\rm dif_under} = Q_{\rm dif} \times \exp\left(-0.5 \times \Omega \times \rm{LAI}/\cos\overline{\theta}\right) , \qquad (B2)$$

$$\cos \theta = 0.537 + 0.025 \text{LAI}$$
, (B3)

$$Q_{\rm shd} = \left(Q_{\rm dif} - Q_{\rm dif_under}\right) / LAI + C \quad , \tag{B4}$$

$$Q_{\rm sun} = Q_{\rm dir} \frac{\cos \alpha}{\cos \theta} + Q_{\rm shd} \quad , \tag{B5}$$

where *C* denotes the multiple scattered radiation (μ mol m⁻² s⁻¹); Ω denotes the clumping index of vegetation, 0.9 is used for crops; Q_{dir} and Q_{dif} denote the direct and diffuse solar radiation in the daytime (μ mol m⁻² s⁻¹); θ denotes the daytime mean solar zenith angle; Q_{dif_under} denotes the daytime radiation under canopy (μ mol m⁻² s⁻¹); $\overline{\theta}$ denotes the solar zenith angle for radiation

transmission; α denotes the inclination angle of leaves ($\pi/3$). The following equations, referring to Black *et al.* (1991); Chen *et al.* (1999); Liu *et al.* (1999), was adopted to calculate Q_{dir} and Q_{dir} .

$$R = \frac{Rg}{R_0},\tag{B6}$$

$$\frac{Rg_{\rm dif}}{Rg} = \begin{cases} 0.13 , R \ge 0.8\\ 0.943 + 0.734R - 4.9R^2 + 1.796R^3 + 2.058R^4, R < 0.8 \end{cases}$$
(B7)

$$Q_{\rm dif} = Q \cdot \frac{Rg_{\rm dif}}{Rg},\tag{B8}$$

$$Q = k_{\rm q} \cdot Rg \cdot \frac{Hr_{day}}{24}, \tag{B9}$$

$$Q_{\rm dir} = Q - Q_{\rm dif} , \qquad (B10)$$

where R_0 is the daily extraterrestrial solar radiation (W m⁻²); R denotes the atmosphere transmissivity; Rg denotes the daily global solar radiation (W m⁻²); Rg_{dif}/Rg denotes the proportion of diffuse solar radiation to the global solar radiation; k_q is a factor to scale solar radiation to PPFD (2.0 µmol J⁻¹); Q_{dif}/Q denotes the fraction of diffusion radiation calculated according to Black *et al.* (1991). R_0 is calculated referring to Duffie *et al.* (2013):

$$R_0 = \frac{1}{\pi} S_0 \cdot \left(\cos\varphi \cdot \cos\delta \cdot \sin\omega_{\text{set}} + \omega_{\text{set}} \cdot \sin\varphi \cdot \sin\delta\right), \tag{B11}$$

$$\omega_{\text{set}} = \arccos\left(-\tan\varphi\tan\delta\right),\tag{B12}$$

where S_0 denotes the solar constant (1367 W m⁻²); ω_{set} denotes the hour angle of sunset (rad).

Appendix C

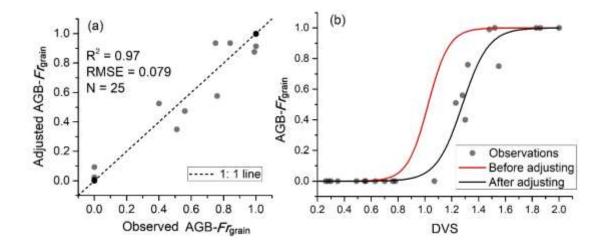


Figure C1 Observed aboveground biomass (AGB) based Fr_{grain} (AGB- Fr_{grain}) vs. the calculated values (a), and a comparison between the AGB- Fr_{grain} curve before and that after adjusting (b). The AGB- Fr_{grain} indicates the photosynthetic production that is used for grian-filling, in proportion to the total aboveground biomass. The observed AGB- Fr_{grain} were retrieved from Hao *et al.* (2016). Some points having the same value overlap in the figure. R denotes the correlation coefficient and RMSE denotes the root mean standard error. Superscript "**" implies the correlation is significant at the 0.01 level (similarly hereinafter).

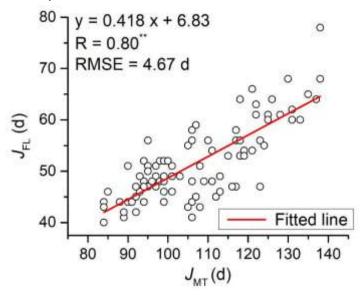


Figure C2 An estimate of the number of days for maize developing from emerging to flowering (J_{FL}) in terms of the length of growing seasons (J_{MT}). A total of 94 samples are available.

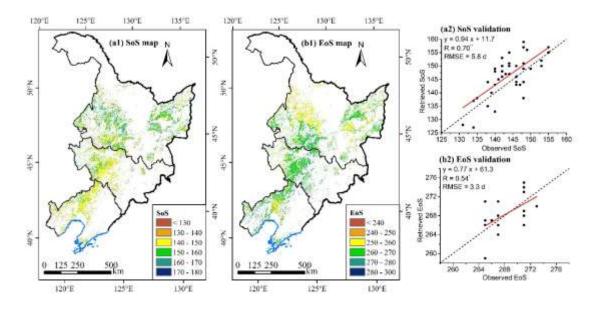


Figure C3 The maps of RS-retrieved emerging and maturity DoY values of maize (a1 and b1) over the study region and the comparison against the site-observations (a2 and b2). The legend for boundaries shows in Figure 1.

Appendix D. Abbreviations and variables

Abbreviations or variables	Descriptions
A _n	Net photosynthesis rate
A_{v}, A_{e}, A_{s}	Rubisco, potential electron transport and export limited photosynthesis rates respectively
Ca	Partial pressure of CO_2 in the atmosphere
CGM	Crop growth model
Ci	intercellular partial pressure of CO ₂
De_x	Daily senescence rate of organ "x"
dM	Dry matter change
DMCS	Data-model coupling strategy
dM_x	Daily change in the dry matter of organ "x"
DVS	Development stage
EM	Crop emerging stage
EVI	Enhanced vegetation idex
FL	Crop flowering stage
$f_N(N)$	Restrictive function of nitrogen supply
Fr_x	Fraction of daily photosynthesis product allocated to organ ' x '
$g(g_{\rm st})$	Stomatal conductance measured in µmol m ⁻² s ⁻¹
GDD	Growing degree days
GDD1 and GDD2	GDD required for crop developing from emerging to flowering and from flowering to maturity, respectively
GDD _{leafLife}	GDD from leaf span to the start of leaf senescence
GPP	Growth primary productivity
<i>g</i> _{st}	Stomatal conductance measured in m s ⁻¹
HI	Harvest index
$Hr_{\rm day}$	Length of daytime in hours
<i>Hr</i> _S	Daily sun duration hours
$J_{ m FL}$ and $J_{ m MT}$	Number of days required for crop developing from emerging to flowering and from emerging to maturity, respectively
LAI	Leaf area index
LAI _{shd} and LAI _{sun}	Leaf area index of shaded and sunlight leaves
LUE	Light use efficiency
$M_{ m C}$	Mole mass of carbon (12 g mol^{-1})
$M_{ m grain}$	Dry matter of the grain
$M_{ m leaf}$	Dry matter of leaf
MT	Crop maturity stage
NECP	Northeast China Plain
P _{atm}	Atmosphere pressure
Pr _{ann}	Mean annual precipitation

Q	Photosynthetically active radiation (PAR) on the leaf surface
Q_{10}	Temperature sensitivity parameter of respiration reflecting the increments of respiration rate with an increase of temperature by 10° C
R_0	Extraterrestrial solar radiation
PRYM-Maize	A Process-based and Remote sensing crop Yield Model for Maize
R _d	Dark respiration
Rg	Global solar radiation
$R_{ m g}$	Growth respiration rate
$R_{ m gas}$	mole constant of gas
r _m	Maintenance respiration coefficient, $r_{m,grain}$, $r_{m,leaf}$, $r_{m,stem}$ and $r_{m,root}$ denotes the r_m values for grain, leaf, stem and root, respectivley.
R _m	Maintenance respiration rate
RS	Remote sensing
$R_{ m total}$	Daily total respiration rate
SWC	Soil water content
Т	Temperature
t_0	Current day
$T_{\rm a,daily}$	Daily temperature
$T_{\rm base}$, $T_{\rm o}$ and $T_{\rm m}$	The base, optimum and maximum temperature for crop developments
$T_{\rm eff}$	Effective temperature
$t_{\rm EM}$, $t_{\rm FL}$ and $t_{\rm MT}$	Dates for emerging, flowering and maturity, respectively
$T_{\rm R}$	Daily temperature range
ts	Temporal scale
$V_{ m m}$	Maximum carboxylation rate
V_{m25}	Maximum carboxylation rate at the temperature of 25° C
WUE	Water use efficiency
З	Intrinsic quantum efficiency
\mathcal{E}_{m}	Maximum value for ε