Fig. S1. Biomass of two tobacco cultivars responding to different kinds of NH$_4^+$/NO$_3^-$ ratio.

Seedlings were subjected to different kinds (0/100, 25/75, 50/50, 75/25, 97/3) NH$_4^+$/NO$_3^-$ ratio for 9 days. Values are means of 6 replications ± SE and bars with different letters indicate significant differences at P<0.05 among three kinds of treatments for each cultivar, as determined by ANOVA followed by the LSD test.
Fig. S2. Effects of NPA on primary lateral root (1° LR) number and density of NC89 tobacco seedlings subjected to low (0/100, 0 mM NH$_4^+$ and 3.75 mM NO$_3^-$), high (97/3, 3.64mM NH$_4^+$ and 0.11mM NO$_3^-$) NH$_4^+$/NO$_3^-$ ratio or provided with optimum NH$_4^+$/NO$_3^-$ ratio (50/50, 1.875 mM NH$_4^+$ and 1.875 mM NO$_3^-$) for 9 days. Values are means of 6 replications ± SE and bars with different letters indicate significant differences at P<0.05 among three kinds of treatments, as determined by ANOVA followed by the LSD test.
Fig. S3. Effects of NAA on primary lateral root (1° LR) number and density of NC89 tobacco seedlings subjected to low (0/100, 0 mM NH₄⁺ and 3.75 mM NO₃⁻), high (97/3, 3.64mM NH₄⁺ and 0.11mM NO₃⁻) NH₄⁺/NO₃⁻ ratio or provided with optimum NH₄⁺/NO₃⁻ ratio (50/50, 1.875 mM NH₄⁺ and 1.875 mM NO₃⁻) for 9 days. Values are means of 6 replications ± SE and bars with different letters indicate significant differences at P<0.05 among three kinds of treatments, as determined by ANOVA followed by the LSD test.