Appendix

Structural models in rice

Leaf blade length models

The jth leaf blade length on main stem on ith d after emergence (in cm), $LL_j(i)$, can be calculated as follows:

$LL_j(i) = DWLB_j(i) \times RLW_j(i)$

$DWLB_j(i) = CPLB_j(i) \times DWSP(i)$

$DWSP(i) = X, \quad MDWSP(i) - MDWSP(i) \leq X \leq MDWSP(i) + MDWSP(i)$

$RLW_j(i) = 4026.103 - 2162.051 LP_{ji} + 504.183 LP_{ji}^2 - 41.241 LP_{ji}^3, 1 \leq j \leq 6$

$CPLB_j(i) = e^{(CP1+CP2/LP_{ji})}, 1 \leq j \leq 6$

Where $DWLB_j(i)$, $RLW_j(i)$, and $CPLB_j(i)$ are the jth leaf blade dry weight (in g), the ratio of the jth leaf blade length to blade dry weight (in cm g$^{-1}$), and the ratio of the jth leaf blade dry weight to whole single aboveground plant (in g g$^{-1}$) on ith d after emergence, respectively. $DWSP(i)$ is the dry weight per plant on ith d after emergence (in g plant$^{-1}$), $MDWSP(i)$ is the mean dry weight per plant on ith d after emergence (in g plant$^{-1}$), $SDWSP(i)$ is the standard error of dry weight per plant on ith d after emergence (determined by experiment) (in g plant$^{-1}$), $DWCP(i)$ is the dry weight in canopy per area on ith d after emergence (in g m$^{-2}$), DES represents the plant number per area (in plant m$^{-2}$) (as one parameter of cultivation practices), and LP_{ji} is the leaf position on main stem on ith d after emergence.

Maximum leaf blade width model

The jth maximum leaf blade width on ith d after emergence (in cm), $LW_j(i)$, could be represented by a growth function as in EQN (8)

$LW_j(i) = e^{-1.591+0.085 LL_j(i)}, 1 \leq j \leq 6$

Where the symbols are the same as above.

Leaf sheath length model
The \(j \)th leaf sheath length of fully grown leaves on \(i \)th day after emergence (in cm), \(LS_j (i) \), of different cultivars with the leaf blade length on main stem could be represented by a power function.

\[
LS_j (i) = 1.846 LL_j^{0.452}, \quad 1 \leq j \leq (6 - 1)
\]

Where the symbols are the same as above.

Leaf blade bowstring length model

The \(j \)th leaf blade bowstring length on \(i \)th day after emergence (in cm), \(LBBL_j (i) \), is a property of leaf blade bend degree (the maximum \(LBBL_j (i) \) = \(LL_j (i) \)), and it can be expressed as

\[
LBBL_j (i) = 0.040 + 0.957 LL_j (i), \quad 1 \leq j \leq 6
\]

Where the symbols are the same as above.

Leaf blade angles models

The blade tangent angle (TA) (\(^\circ\)), \(\angle O'OB \), and blade bowstring angle (BA) (\(^\circ\)), \(\angle O'OA \) (Fig. 19) are

\[
TA_j (i) = DWLB_j (i) \times RTW_j (i)
\]
\[
BA_j (i) = DWLB_j (i) \times RBW_j (i)
\]
\[
RTW_j (i) = 72942.326 LP_j^{-3.225}, \quad 1 \leq j \leq (6 - 1)
\]
\[
RBW_j (i) = 76830.636 LP_j^{-2.906}, \quad 1 \leq j \leq (6 - 1)
\]

Where \(RTW_j (i) \) and \(RBW_j (i) \) are the ratio of the blade tangent angle, and the blade bowstring angle to the \(j \)th leaf blade dry weight on main stem on \(i \)th day after emergence (\(^\circ\) g\(^{-1}\)), respectively, and the other symbols are the same as above.

Fig. Chart of leaf blade angles.