Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (12): 4715-4731    DOI: 10.1016/j.jia.2025.03.001
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Alternative splicing of Spodoptera exigua caspase-5 is involved in regulating host-cell apoptosis induced by AcMNPV infection

Qianlong Yu, Xinyu Wu, Minghui Wang, Jie Li, Guiling Zheng, Changyou Li#

Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
 Highlights 
SeCaspase-5 has alternative splicing which forms four splicing variants: SeCaspase-5a, SeCaspase-5b, SeCaspase-5c and SeCaspase-5d.
SeCaspase-5a has a proapoptotic function, while SeCaspase-5b, SeCaspase-5c and SeCaspase-5d have nonapoptotic functions and increase AcMNPV production.
SeCaspase-5b, SeCaspase-5c and SeCaspase-5d can inhibit the proapoptotic function of SeCaspase-5a through direct protein interactions.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

胱天蛋白酶(Caspase)是调控细胞凋亡的关键基因,其能够通过可变剪切形成不同的可变剪切体,进而调控细胞凋亡过程。鳞翅目昆虫Caspase也有可变剪切现象,然而它们形成的剪切体的功能尚不清楚。我们通过克隆甜菜夜蛾胱天蛋白酶-5SeCaspase-5)基因,获得了四种具有不同基因序列和蛋白功能结构域的剪切体,分别命名为SeCaspase-5aSeCaspase-5bSeCaspase-5cSeCaspase-5d。这些剪切体分别在甜菜夜蛾Se-3细胞中过表达表明,SeCaspase-5a具有促凋亡功能,而SeCaspase-5bSeCaspase-5cSeCaspase-5d则没有。半定量PCR分析显示,SeCaspase-5的不同剪切体在苜蓿丫纹夜蛾核多角体病毒(Autographa californica multiple nucleopolyhedrovirus, AcMNPV)感染期间的表达存在显著差异。进一步将SeCaspase-5的不同剪切体构建到AcMNPV 的基因组bacmid中并转染Se-3细胞,发现SeCaspase-5a促进了细胞凋亡并导致病毒的产量下降,而SeCaspase-5bSeCaspase-5cSeCaspase-5d没有促进细胞凋亡,反而增加了病毒的产量。此外,SeCaspase-5的不同剪切体之间的互作分析表明,SeCaspase-5a能够与其自身及SeCaspase-5bSeCaspase-5cSeCaspase-5d发生直接的蛋白互作。而且,将这些剪切体在Se-3细胞中共表达,表明SeCaspase-5bSeCaspase-5cSeCaspase-5d在一定程度上抑制了SeCaspase-5a的促凋亡功能,相比SeCaspase-5a单独表达导致凋亡细胞的百分比降低了约20%。这些结果表明,SeCaspase-5具有可变剪切现象,并且参与调控杆状病毒侵染诱导的细胞凋亡。这些发现加深了对鳞翅目昆虫胱天蛋白酶功能的理解,并为研究杆状病毒诱导宿主细胞凋亡的机制提供了新的见解。



Abstract  

Caspases, which play key roles in cell apoptosis, undergo alternative splicing to form different splicing variants that can regulate the apoptotic process.  Lepidopteran insect caspases undergo alternative splicing, although the functions of their splicing variants are still unclear.  The Spodoptera exigua caspase-5 (SeCaspase-5) gene was cloned and found to produce four different splicing variants with different gene sequences and protein functional domains, which were named SeCaspase-5a, SeCaspase-5b, SeCaspase-5c and SeCaspase-5d.  Overexpression of these variants in S. exigua cells (Se-3) showed that SeCaspase-5a had a proapoptotic function, whereas SeCaspase-5b, SeCaspase-5c and SeCaspase-5d did not.  Semi-qPCR analysis revealed that the expression of the SeCaspase-5 variants significantly differed during Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection.  Furthermore, the SeCaspase-5 variants were constructed into the AcMNPV bacmid and transfected into Se-3 cells, which revealed that SeCaspase-5a promoted cell apoptosis and reduced virus production, whereas SeCaspase-5b, SeCaspase-5c and SeCaspase-5d did not promote cell apoptosis but instead increased virus production.  Moreover, an analysis of the interactions between the SeCaspase-5 variants revealed that SeCaspase-5a directly interacted with SeCaspase-5b, SeCaspase-5c and SeCaspase-5d.  Coexpression of these variants in Se-3 cells also revealed that SeCaspase-5b, SeCaspase-5c and SeCaspase-5d inhibited the proapoptotic function of SeCaspase-5a, resulting in a reduction in the percentage of apoptotic cells by about 20%.  These results indicate that SeCaspase-5 undergoes alternative splicing and is involved in regulating the apoptosis induced by baculovirus infection.  These findings increase our understanding of the functions of lepidopteran insect caspases and provide new insights into the mechanism of host-cell apoptosis induced by baculoviruses.

Keywords:  apoptosis       SeCaspase-5        alternative splicing        AcMNPV        Spodoptera exigua  
Received: 31 October 2024   Accepted: 23 December 2024 Online: 25 March 2025  
Fund: 

The study was funded by the National Natural Science Foundation of China (32202393), the Natural Science Foundation of Shandong Province, China (ZR2021QC190), the Science and Technology Benefiting the People Demonstration Project of Qingdao, China (24-1-8-xdny-10-nsh) and the Qingdao Agricultural University High-level Talent Fund, China (663/1120101).  

About author:  Qianlong Yu, Mobile: +86-13210022808, E-mail: qlyu@qau.edu.cn; #Correspondence Changyou Li, Tel: +86-532-58957462, E-mail: cyli@qau.edu.cn

Cite this article: 

Qianlong Yu, Xinyu Wu, Minghui Wang, Jie Li, Guiling Zheng, Changyou Li. 2025. Alternative splicing of Spodoptera exigua caspase-5 is involved in regulating host-cell apoptosis induced by AcMNPV infection. Journal of Integrative Agriculture, 24(12): 4715-4731.

Alnemri E S, Livingston D J, Nicholson D W, Salvesen G, Thornberry N A, Wong W W, Yuan J. 1996. Human ICE/CED-3 protease nomenclature. Cell87, 171.

Bai L, Sun Y, Yue X, Ji N, Yan F, Yang T, Feng G, Guo Y, Li Z. 2024. Multifaceted interactions between host ESCRT-III and budded virus-related proteins involved in entry and egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus. Journal of Virology98, e0190023.

Blake D, Radens C M, Ferretti M B, Gazzara M R, Lynch K W. 2022. Alternative splicing of apoptosis genes promotes human T cell survival. eLife11, e80953.

Blissard G W, Theilmann D A. 2018. Baculovirus entry and egress from insect cells. Annual Review of Virology5, 113–139.

Boatright K M, Renatus M, Scott F L, Sperandio S, Shin H, Pedersen I M, Ricci J E, Edris W A, Sutherlin D P, Green D R, Salvesen G S. 2003. A unified model for apical caspase activation. Molecular Cell11, 529–541.

Chalfant C E, Rathman K, Pinkerman R L, Wood R E, Obeid L M, Ogretmen B, Hannun Y A. 2002. De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Journal of Biological Chemistry277, 12587–12595.

Chang H Y, Yang X. 2000. Proteases for cell suicide: Functions and regulation of caspases. Microbiology and Molecular Biology Reviews64, 821–846.

Clem R J. 2007. Baculoviruses and apoptosis: A diversity of genes and responses. Current Drug Targets8, 1069–1074.

Cooper D M, Granville D J, Lowenberger C. 2009. The insect caspases. Apoptosis14, 247–256.

Courtiade J, Pauchet Y, Vogel H, Heckel D G. 2011. A comprehensive characterization of the caspase gene family in insects from the order Lepidoptera. BMC Genomics12, 357.

Dorstyn L, Akey C W, Kumar S. 2018. New insights into apoptosome structure and function. Cell Death and Differentiation25, 1194–1208.

Earnshaw W C, Martins L M, Kaufmann S H. 1999. Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annual Review of Biochemistry68, 383–424.

Elmore S. 2007. Apoptosis: A review of programmed cell death. Toxicologic Pathology35, 495–516.

Fan T J, Han L H, Cong R S, Liang J. 2005. Caspase family proteases and apoptosis. Acta Biochimica et Biophysica Sinica37, 719–727.

Fang Y, Peng K. 2022. Regulation of innate immune responses by cell death-associated caspases during virus infection. The FEBS Journal289, 4098–4111.

Fraser A G, McCarthy N J, Evan G I. 1997. DrlCE is an essential caspase required for apoptotic activity in Drosophila cells. EMBO Journal16, 6192–6199.

Fuentes-Prior P, Salvesen G S. 2004. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochemical Journal384, 201–232.

Fujita E, Jinbo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T. 1999. Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochemical Biophysical Research Communications264, 550–555.

Galluzzi L, López-Soto A, Kumar S, Kroemer G. 2016. Caspases connect cell-death signaling to organismal homeostasis. Immunity44, 221–231.

Goehe R W, Shultz J C, Murudkar C, Usanovic S, Lamour N F, Massey D H, Zhang L, Camidge D R, Shay J W, Minna J D, Chalfant C E. 2010. hnRNP L regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing. The Journal of Clinical Investigation120, 3923–3939.

Henry C M, Martin S J. 2017. Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Molecular Cell65, 715–729.

Huang N, Civciristov S, Hawkins C J, Clem R J. 2013. SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperdaInsect Biochemistry Molecular Biology43, 444–454.

Julien O, Wells J A. 2017. Caspases and their substrates. Cell Death and Differentiation24, 1380–1389.

Kesavardhana S, Kanneganti T D. 2017. Mechanisms governing inflammasome activation, assembly and pyroptosis induction. International Immunology29, 201–210.

Kesavardhana S, Subbarao Malireddi R K, Kanneganti T D. 2020. Caspases in cell death, inflammation, and pyroptosis. Annual Review of Immunology38, 567–595.

Kitaguchi K, Hamajima R, Yamada H, Kobayashi M, Ikeda M. 2013. Cloning and functional characterization of the Lymantria dispar initiator caspase dronc. Biochemical and Biophysical Research Communications436, 331–337.

Koganti S, Burgula S, Bhaduri-McIntosh S. 2020. STAT3 activates the anti-apoptotic form of caspase 9 in oncovirus-infected B lymphocytes. Virology540, 160–164.

Kumar S, Doumanis J. 2000. The fly caspases. Cell Death and Differentiation7, 1039–1044.

Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q. 2017. Caspase-9: Structure, mechanisms and clinical application. Oncotarget8, 23996–24008.

Li Z, Blissard G W. 2012. Cellular VPS4 is required for efficient entry and egress of budded virions of Autographa californica multiple nucleopolyhedrovirus. Journal of Virology86, 459–472.

Luckow V A, Lee S C, Barry G F, Olins P O. 1993. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coliJournal of Virology67, 4566–4579.

Man S M, Kanneganti T D. 2016. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nature Reviews Immunology16, 7–21.

Maushagen R, Reers S, Pfannerstill A C, Hahlbrock A, Stauber R, Rahmanzadeh R, Rades D, Pries R, Wollenberg B. 2016. Effects of paclitaxel on permanent head and neck squamous cell carcinoma cell lines and identification of anti-apoptotic caspase 9b. Journal of Cancer Research Clinical Oncology142, 1261–1271.

McIlwain D R, Berger T, Mak T W. 2013. Caspase functions in cell death and disease. Cold Spring Harbor Perspectives Biology5, a008656.

Van Opdenbosch N, Lamkanfi M. 2019. Caspases in cell death, inflammation, and disease. Immunity50, 1352–1364.

O’Reilly D R, Miller L K, Luckow V A. 1992. Baculovirus Expression Vectors: A Laboratory Manual. Oxford University Press, New York.

Pan D, Boon-Unge K, Govitrapong P, Zhou J. 2011. Emetine regulates the alternative splicing of caspase 9 in tumor cells. Oncology Letters2, 1309–1312.

Pan Q, Shai O, Lee L J, Frey B J, Blencowe B J. 2008. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics40, 1413–1415.

Park H H, Lo Y C, Lin S C, Wang L, Yang J K, Wu H. 2007. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annual Review of Immunology25, 561–586.

Park J W, Graveley B R. 2007. Complex alternative splicing. Advances in Experimental Medicine and Biology623, 50–63.

Penaloza C, Orlanski S, Ye Y, Entezari-Zaher T, Javdan M, Zakeri Z. 2008. Cell death in mammalian development. Current Pharmaceutical Design14, 184–196.

Rogalska M E, Vivori C, Valcárcel J. 2023. Regulation of pre-mRNA splicing: Roles in physiology and disease, and therapeutic prospects. Nature Reviews Genetics24, 251–269.

Rohrmann G F. 2019. Baculovirus Molecular Biology. 4th ed. [2024-2-18]. https://www.ncbi.nlm.nih.gov/books/NBK543458/pdf/Bookshelf_NBK543458.pdf

Sahoo G, Samal D, Khandayataray P, Murthy M K. 2023. A review on caspases: Key regulators of biological activities and apoptosis. Molecular Neurobiology60, 5805–5837.

Salvesen G S. 2002. Caspases and apoptosis. Essays in Biochemistry38, 9–19.

Seol D W, Billiar T R. 1999. A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. Journal of Biological Chemistry274, 2072–2076.

Shalini S, Dorstyn L, Dawar S, Kumar S. 2015. Old, new and emerging functions of caspases. Cell Death and Differentiation22, 526–539.

Shi Y. 2002. Mechanisms of caspase activation and inhibition during apoptosis. Molecular Cell9, 459–470.

Shi Y. 2004. Caspase activation: Revisiting the induced proximity model. Cell117, 855–858.

Shultz J C, Goehe R W, Wijesinghe D S, Murudkar C, Hawkins A J, Shay J W, Minna J D, Chalfant C E. 2010. Alternative splicing of caspase 9 is modulated by the phosphoinositide 3-kinase/Akt pathway via phosphorylation of SRp30a. Cancer Research70, 9185–9196.

Su R, Zheng G L, Wan F H, Li C Y. 2016. Establishment and characterization of three embryonic cell lines of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Cytotechnology68, 1223–1232.

Sun Q, Li S, Li J, Fu Q, Wang Z, Li B, Liu SS, Su Z, Song J, Lu D. 2018. Homoharringtonine regulates the alternative splicing of Bcl-x and caspase 9 through a protein phosphatase 1-dependent mechanism. BMC Complementary Medicine and Therapies18, 164.

Talanian R V, Quinlan C, Trautz S, Hackett M C, Mankovich J A, Banach D, Ghayur T, Brady K D, Wong W W. 1997. Substrate specificities of caspase family proteases. Journal of Biological Chemistry272, 9677–9682.

Venables J P. 2004. Aberrant and alternative splicing in cancer. Cancer Research64, 7647–7654.

Ying Z, Li A, Lu Z, Wu C, Yin H, Yuan M, Pang Y. 2013. The Spodoptera frugiperda effector caspase Sf-caspase-1 becomes unstable following its activation. Archives of Insect Biochemistry Physiology83, 195–210.

Yu Q, Wang M, Ding X, Han J, Ma H, Li J, Zheng G, Zhang B, Li C. 2023. The expression of P35 plays a key role in the difference in apoptosis induced by AcMNPV infection in different Spodoptera exigua cell lines. International Journal of Molecular Sciences24, 13228.

Yuan S, Yu X, Asara J M, Heuser J E, Ludtke S J, Akey C W. 2011. The holo-apoptosome: Activation of procaspase-9 and interactions with caspase-3. Structure19, 1084–1096.

Yue Q, Yu Q, Yang Q, Xu Y, Guo Y, Blissard G W, Li Z. 2018. Distinct roles of cellular ESCRT-I and ESCRT-III proteins in efficient entry and egress of budded virions of Autographa californica multiple nucleopolyhedrovirus. Journal of Virology92, e01636–17.

Zhang B, Liu B, Huang C, Xing L, Li Z, Liu C, Zhou H, Zheng G, Li J, Han J, Yu Q, Yang C, Qian W, Wan F, Li C. 2023. A chromosome-level genome assembly of the beet armyworm Spodoptera exiguaGenomics115, 110571.

Zhang Y, Liu H, Cao S, Li B, Liu Y, Wang G. 2024. Identification of transient receptor potential channel genes and functional characterization of TRPA1 in Spodoptera frugiperdaJournal of Integrative Agriculture23, 1994–2005.

Zhu H, Yuan Z, Xu H, Sun L. 2024. Characterization of the apoptotic and antimicrobial activities of two initiator caspases of sea cucumber Apostichopus japonicusGenes (Basel), 15, 540.

[1] Mengfei Zhang, Shicheng Wan, Wenbo Chen, Donghui Yang, Congliang Wang, Balun Li, Aierken Aili, Xiaomin Du, Yunxiang Li, Wenping Wu, Yuqi Wang, Fangde Xie, Xuan Luo, Na Li, Xueling Li, Lei Yang, Ahmed Hamed Arisha, Jinlian Hua. miR-21-5p ameliorates Busulfan-induced testicular dysfunction and maintains spermatogenesis[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4744-4759.
[2] Shanshan Su, Hongwu Liu, Junrong Zhang, Puying Qi, Yue Ding, Ling Zhang, Linli Yang, Liwei Liu, Xiang Zhou, Song Yang.

Discovery and structure-activity relationship studies of novel tetrahydro-β-carboline derivatives as apoptosis initiators for treating bacterial infections [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1259-1273.

[3] Shengjie Shi, Lutong Zhang, Liguang Wang, Huan Yuan, Haowei Sun, Mielie Madaniyati, Chuanjiang Cai, Weijun Pang, Lei Gao, Guiyan Chu.

miR-24-3p promotes proliferation and inhibits apoptosis of porcine granulosa cells by targeting P27 [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1315-1328.

[4] Hainan Liu, Maosong Pei, Charles Ampomah-Dwamena, Yaxin Shang, Yihe Yu, Tonglu Wei, Qiaofang Shi, Dalong Guo.

Alternative splicing of the PECTINESTERASE gene encoding a cell wall-degrading enzyme affects postharvest softening in grape [J]. >Journal of Integrative Agriculture, 2024, 23(3): 863-875.

[5] Dan Chu, Bin Chen, Bo Weng, Saina Yan, Yanfei Yin, Xiangwei Tang, Maoliang Ran. Long non-coding RNA FPFSC promotes immature porcine Sertoli cell growth through modulating the miR-326/EHMT2 axis[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3830-3842.
[6] ZHAO Jing, WU Ya-mei, ZHANG Yao, TANG Shu-yue, HAN Shun-shun, CUI Can, TAN Bo, YU Jie, KANG Hou-yang, CHEN Guang-deng, MA Meng-gen, ZHU Qing, YIN Hua-dong. miR-27b-5p regulates chicken liver disease via targeting IRS2 to suppress the PI3K/AKT signal pathway[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3500-3516.
[7] Saif ULLAH, Sheeraz MUSTAFA, Wael ENNAB, Muhammad JAN, Muhammad SHAFIQ, Ngekure M. X. KAVITA, Lü Zeng-peng, MAO Da-gan, SHI Fang-xiong. A protective role of resveratrol against the effects of immobilization stress in corpora lutea of mice in early pregnancy[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1857-1866.
[8] LI Fu-hua, ZHENG Shao-jie, ZHAO Ji-chun, LIAO Xia, WU Su-rui, MING Jian. Phenolic extract of Morchella angusticeps peck inhibited the proliferation of HepG2 cells in vitro by inducing the signal transduction pathway of p38/MAPK[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2829-2838.
[9] WANG Jun, SHI xin-jin, SUN Hai-wei, CHEN Hong-jun. Insights into African swine fever virus immunoevasion strategies[J]. >Journal of Integrative Agriculture, 2020, 19(1): 11-22.
[10] RAN Mao-liang, WENG Bo, CAO Rong, PENG Fu-zhi, LUO Hui, GAO Hu, CHEN Bin. miR-34c inhibits proliferation and enhances apoptosis in immature porcine Sertoli cells by targeting the SMAD7 gene[J]. >Journal of Integrative Agriculture, 2019, 18(2): 449-459.
[11] ZHANG Feng, GAO Peng, GE Xin-na, ZHOU Lei, GUO Xin, YANG Han-chun. Critical role of cytochrome c1 and its cleavage in porcine reproductive and respiratory syndrome virus nonstructural protein 4-induced cell apoptosis via interaction with nsp4[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2573-2585.
[12] PAN Chuan-ying, YU Shuai, ZHANG Peng-fei, WANG Bo, ZHU Zhen-dong, LIU Ying-ying, ZENG Wen-xian . Effect of sucrose on cryopreservation of pig spermatogonial stem cells[J]. >Journal of Integrative Agriculture, 2017, 16(05): 1120-1129.
[13] HU Ting-xi, ZHU Hua-bin, SUN Wei-jun, HAO Hai-sheng, ZHAO Xue-ming, DU Wei-hua, WANG Zong-li. Sperm pretreatment with glutathione improves IVF embryos development through increasing the viability and antioxidative capacity of sex-sorted and unsorted bull semen[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2326-2335.
[14] YU De-bing, YU Min-li, LIN Fei, JIANG Bao-chun, YANG Li-na, WANG Si-yu, ZHAO Ying , WNAG Zheng-chao. Morphological and Hormonal Identification of Porcine Atretic Follicles and Relationship Analysis of Hormone Receptor Levels During Granulosa Cell Apoptosis In vivo[J]. >Journal of Integrative Agriculture, 2014, 13(5): 1058-1064.
[15] SHI Ya-ran, WANG Zhan-he, CAO Yong-chun, LU Yan, TIAN Jin-ling, ZhANG Chao, JIA Zi-ye, CHEN Wu. Relationships Between Icariin and Anti-Apoptotic miRNA-21 in Mouse Blastocyst Development In vitro[J]. >Journal of Integrative Agriculture, 2013, 12(4): 663-669.
No Suggested Reading articles found!