期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1.  Impacts of Nighttime Warming on the Soil Nematode Community in a Winter Wheat Field of Yangtze Delta Plain, China
SONG Zhen-wei, ZHANG Bin, TIAN Yun-lu, DENG Ai-xing, ZHENG Cheng-yan, Md Nurul Islam, Md Abdul Mannaf , ZHANG Wei-jian
Journal of Integrative Agriculture    2014, 13 (7): 1477-1485.   DOI: 10.1016/S2095-3119(14)60807-8
摘要1839)      PDF    收藏
Changes in the soil nematode community induced by global warming may have a considerable influence on agro-ecosystem functioning. However, the impacts of predicted warming on nematode community in farmland (e.g., winter wheat field) have not been well documented. Therefore, a field experiment with free air temperature increase (FATI) was conducted to investigate the responses of the soil nematode community to nighttime warming in a winter wheat field of Yangtze Delta Plain, China, during 2007 to 2009. Nighttime warming (NW) by 1.8°C at 5-cm soil depth had no significant impact on the total nematode abundance compared to un-warmed control (CK). However, NW significantly affected the nematode community structure. Warming favored the bacterivores and fungivores, such as Acrobeles, Monhystera, Rhabditis, and Rhabdontolaimus in bacterivores, and Filenchus in fungivores, while the plant-parasites were hindered, such as Helicotylenchus and Psilenchus. Interestingly, the carnivores/ omnivores remained almost unchanged. Hence, the abundances of bacterivores and fungivores were significantly higher under NW than those under CK. Similarly, the abundances of plant-parasites were significantly lower under NW than under CK. Furthermore, Wasilewska index of the nematode community was significantly higher under NW than those under CK, indicating beneficial effect to the plant in the soil. Our results suggest that nighttime warming may improve soil fertility and decrease soil- borne diseases in winter wheat field through affecting the soil nematode community. It is also indicated that nighttime warming may promote the sustainability of the nematode community by altering genera-specific habitat suitability for soil biota.
参考文献 | 相关文章 | 多维度评价
2. Effects of Tillage Practices on Water Consumption, Water Use Efficiency and Grain Yield in Wheat Field
ZHENG Cheng-yan, YU Zhen-wen, SHI Yu, CUI Shi-ming, WANG Dong, ZHANG Yong-li, ZHAO Jun-ye
Journal of Integrative Agriculture    2014, 13 (11): 2378-2388.   DOI: 10.1016/S2095-3119(13)60733-9
摘要1606)      PDF    收藏
Water shortage is a serious issue threatening the sustainable development of agriculture in the North China Plain, with the winter wheat (Triticum aestivum L.) as its largest water-consuming crop. The effects of tillage practices on the water consumption and water use efficiency (WUE) of wheat under high-yield conditions using supplemental irrigation based on testing soil moisture dynamic change were examined in this study. This experiment was conducted from 2007 to 2010, with five tillage practice treatments, namely, strip rotary tillage (SR), strip rotary tillage after subsoiling (SRS), rotary tillage (R), rotary tillage after subsoiling (RS), and plowing tillage (P). The results showed that in the SRS and RS treatments the total water and soil water consumptions were 11.81, 25.18% and 12.16, 14.75% higher than those in SR and R treatments, respectively. The lowest ratio of irrigation consumption to total water consumption in the SRS treatment was 18.53 and 21.88% for the 2008-2009 and 2009- 2010 growing seasons, respectively. However, the highest percentage of water consumption was found in the SRS treatment from anthesis to maturity. No significant difference was found between the WUE of the flag leaf at the later filling stage in the SRS and RS treatments, but the flag leaf WUE at these stages were higher than those of other treatments. The SRS and RS treatments exhibited the highest grain yield (9 573.76 and 9 507.49 kg ha-1 for 3-yr average) with no significant difference between the two treatments, followed by P, R and SR treatments. But the SRS treatment had the highest WUE. Thus, the 1-yr subsoiling tillage, plus 2 yr of strip rotary planting operation may be an efficient measure to increase wheat yield and WUE.
参考文献 | 相关文章 | 多维度评价