期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. JIA-2022-0028  miR164-TaNAC14模块调节小麦幼苗根系发育和非生物胁迫耐性
CHI Qing, DU Lin-ying, MA Wen, NIU Ruo-yu, WU Bao-wei, GUO Li-jian, MA Meng, LIU Xiang-li, ZHAO Hui-xian#
Journal of Integrative Agriculture    2023, 22 (4): 981-998.   DOI: 10.1016/j.jia.2022.08.016
摘要497)      PDF    收藏

前人研究已经揭示出水稻和拟南芥中 miR164家族和mir164靶向的转录因子基因在发育过程和胁迫应答中扮演着多种角色。我们在小麦中发现的9tae-miR164遗传位点(tae-mir164a to i)能生成两个miR164成熟序列,它们通过切割各自靶标mRNA的方式使新鉴定的靶基因TaNACs (TaNAC1, TaNAC7, TaNAC11, and TaNAC14)下调表达。小麦tae-miR164或其调控靶基因TaNAC14过表达表明,miR164-TaNAC14模块对小麦幼苗的根系生长发育和非生物胁迫 (干旱和盐碱)耐性有显著影响,TaNAC14促进小麦幼苗根系生长发育,增强耐旱性;而miR164通过下调TaNAC14的表达抑制小麦幼苗根系发育,降低耐旱性和耐盐性。我们研究发现的miR164-TaNAC14模块以及其它tae-miR164调控靶基因,为抗旱小麦育种提供了新的遗传资源。

参考文献 | 相关文章 | 多维度评价
2. Comparison of Two MicroRNA Quantification Methods for Assaying MicroRNA Expression Profiles in Wheat (Triticum aestivum L.)
HAN Ran, YAN Yan, ZHOU Peng , ZHAO Hui-xian
Journal of Integrative Agriculture    2014, 13 (4): 733-740.   DOI: 10.1016/S2095-3119(13)60362-7
摘要1910)      PDF    收藏
Two microRNA (miRNA) quantification methods, namely, poly(A) reverse transcription (RT)-quantitative real-time polymerase chain reaction (qPCR) and stem-loop RT-qPCR, have been developed for quantifying miRNA expression. In the present study, five miRNAs, including miR166, miR167, miR168, miR159, and miR396, with different sequence frequencies, were selected as targets to compare their expression profiles in five wheat tissues by applying the two methods and deep sequencing. The study aimed to determine a simple, reliable and high-throughput method for detecting miRNA expressions in wheat tissues. Results showed that the miRNA expression profiles determined by poly(A) RT-qPCR were more consistent with those obtained by deep sequencing. Further analysis indicated that the correlation coefficients of the data obtained by poly(A) RT-qPCR and deep sequencing (0.739, P 0.01) were higher than those obtained by stem-loop RT-qPCR and deep sequencing (0.535, P 0.01). The protocol used for poly(A) RT-qPCR is simpler than that for stem-loop RT-qPCR. Thus, poly(A) RT-qPCR was a more suitable high-throughput assay for detecting miRNA expression profiles. To the best of our knowledge, this study was the first to compare these two miRNA quantification methods. We also provided useful information for quantifying miRNA in wheat or other plant species.
参考文献 | 相关文章 | 多维度评价
3. Combining Phytate/Ca2+ Fractionation with Trichloroacetic Acid/Acetone Precipitation Improved Separation of Low-Abundant Proteins of Wheat (Triticum aestivum L.) Leaf for Proteomic Analysis
Muhammad A R F Sultan, LIU Hui, CHENG Yu-Feng, ZHANG Pei-pei , ZHAO Hui-xian
Journal of Integrative Agriculture    2013, 12 (7): 1123-1129.   DOI: 10.1016/S2095-3119(13)60344-5
摘要1348)      PDF    收藏
Proteomic assessment of low-abundance leaf proteins is hindered by the large quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) present within plant leaf tissues. In the present study, total proteins were extracted from wheat (Triticum aestivum L.) leaves by a conventional trichloroacetic acid (TCA)/acetone method and a protocol first developed in this work. Phytate/Ca2+ fractionation and TCA/acetone precipitation were combined to design an improved TCA/acetone method. The extracted proteins were analysed by two-dimensional gel electrophoresis (2-DE). The resulting 2-DE images were compared to reveal major differences. The results showed that large quantities of Rubisco were deleted from wheat leaf proteins prepared by the improved method. As many as (758±4) protein spots were detected from 2-DE images of protein extracts obtained by the improved method, 130 more than those detected by the TCA/acetone method. Further analysis indicated that more protein spots could be detected at regions of pI 4.00-4.99 and 6.50-7.00 in the improved method-based 2-DE images. Our findings indicated that the improved method is an efficient protein preparation protocol for separating low-abundance proteins in wheat leaf tissues by 2-DE analysis. The proposed protocol is simple, fast, inexpensive and also applicable to protein preparations of other plants.
参考文献 | 相关文章 | 多维度评价