期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. JIA-2021-0680 dep1通过增强氮素和干物质转运提高水稻产量和氮利用效率
HUANG Li-ying, Li Xiao-xiao, ZHANG Yun-bo, Shah FAHAD, WANG Fei
Journal of Integrative Agriculture    2022, 21 (11): 3185-3198.   DOI: 10.1016/j.jia.2022.07.057
摘要264)      PDF    收藏
携带dep1基因(直立密穗)的水稻品种具有高产和高氮利用效率的潜力。然而,在田间条件下,对这些品种高产和高氮利用效率有关的农艺和生理性状研究的较少。因此,本研究在0和120 kg N ha-1下对遗传背景均为南粳6号的两个分别携带DEP1 (NIL-DEP1) 和dep1-1 (NIL-dep1)基因的近等基因系材料(NILs)进行了产量和氮利用效率评价。综合所有的氮肥处理和种植年份,NIL-dep1的产量和氮素籽粒生产效率(NUEg)分别比NIL-DEP1高25.5%和21.9%。NIL-dep1相对于NIL-DEP1的产量优势主要源于较大的库容(即较高的总颖花数)、较高的结实率、总干物质积累和收获指数。氮素利用而非氮素吸收更有利于NIL-dep1的高产。NIL-dep1显著较高的NUEg与其较高的氮和干物质转运效率、较低的成熟期叶片和茎秆氮素浓度以及较高的叶片谷氨酰胺合成酶(GS)活性有关。综上,在大田条件下,dep1通过提高籽粒灌浆期的叶片GS活性增加氮素和干物质转运,进而提高水稻产量和氮利用效率。
参考文献 | 相关文章 | 多维度评价
2. Geographic variation in the yield formation of single-season high-yielding hybrid rice in southern China
WANG Dan-ying, LI Xu-yi, YE Chang, XU Chun-mei, CHEN Song, CHU Guang, ZHANG Yun-bo, ZHANG Xiu-fu
Journal of Integrative Agriculture    2021, 20 (2): 438-449.   DOI: 10.1016/S2095-3119(20)63360-3
摘要85)      PDF    收藏
Environmental conditions greatly affect the growth of rice. To investigate the geographic differences in yield formation of single-season high-yielding hybrid rice in southern China, experiments were conducted in 2017 and 2018 in the upper and middle–lower reaches of the Yangtze River with 10–30 main locally planted high-yielding hybrid cultivars used as materials. Compared with rice planted in the middle–lower reaches of the Yangtze River, rice planted in the upper reaches has a longer tillering duration, higher accumulated temperature (≥10°C) during tillering period, but lower accumulated temperature and solar radiation from initial booting to maturity. Yield traits comparison between the upper and the middle–lower reaches of Yangtze River showed that the former had 48.1% more panicles per unit area while the latter had 46.4% more grains per panicle; the rice yield in the former was positively correlated with the seed setting rate and the dry matter accumulation before heading, while the latter was positively correlated with grains per panicle and dry matter accumulation from booting to maturity. Comparison of the same variety Tianyouhuazhan planted in different regions showed there was a significant positive correlation between panicle number and the duration of and accumulated temperature during the tillering period (r=0.982**, r=0.993**, respectively), and between grains per panicle and accumulated solar radiation during booting period (r=0.952*). In the upper reaches of the Yangtze River, more than 90% of cultivars with an yield of greater than 11 t ha–1 had an effective panicle number of 250–340 m–2, and there was a significant negative correlation between seed setting rate and grains per panicle; therefore, the high-yielding rice production in these regions with a long effective tillering period (>40 d) should choose varieties with moderate grains per panicle, adopt crop managements such as good fertilizer and water measures during vegetative growth period to ensure a certain number of effective panicles, and to increase the dry matter accumulation before heading. While in regions with a short effective tillering period (<20 d) but good sunshine conditions during the reproductive growth period, such as the middle–lower reaches of the Yangtze River, high-yielding rice production should choose cultivars with large panicles, adopt good water and fertilizer managements during the reproductive growth period to ensure the formation of large panicles and the increase of dry matter accumulation after heading.
相关文章 | 多维度评价
3. Effect of Nitrogen Regimes on Grain Yield, Nitrogen Utilization, Radiation Use Efficiency, and Sheath Blight Disease Intensity in Super Hybrid Rice
LI Di-qin, TANG Qi-yuan, ZHANG Yun-bo, QIN Jian-quan, LI Hu, CHEN Li-jun, YANG Sheng-hai, ZOU Ying-bin , PENG Shao-bing
Journal of Integrative Agriculture    2012, 12 (1): 134-143.   DOI: 10.1016/S1671-2927(00)8520
摘要1658)      PDF    收藏
Poor nitrogen use efficiency in rice production is a critical issue in China. Site-specific N managements (SSNM) such as real-time N management (RTNM) and fixed-time adjustable-dose N management (FTNM) improve fertilizer-N use efficiency of irrigated rice. This study was aimed to compare the different nitrogen (N) rates and application methods (FFP, SSNM, and RTNM methods) under with- and without-fungicide application conditions on grain yield, yield components, solar radiation use efficiency (RUE), agronomic-nitrogen use efficiency (AEN), and sheath blight disease intensity. Field experiments were carried out at Liuyang County, Hunan Province, China, during 2006 and 2007. A super hybrid rice Liangyou 293 (LY293) was used as experimental material. The results showed that RTNM and SSNM have great potential for improving agronomic-nitrogen use efficiency without sacrificing the grain yield. There were significant differences in light interception rate, sheath blight disease incidence (DI) and the disease index (ShBI), and total dry matter among the different nitrogen management methods. The radiation use efficiency was increased in a certain level of applied N. But, the harvest index (HI) decreased with the increase in applied N. There is a quadratic curve relationship between grain yield and applied N rates. With the same N fertilizer rate, different fertilizer-N application methods affected the RUE and grain yield. The fungicide application not only improved the canopy light interception rate, RUE, grain filling, and harvest index, but also reduced the degree of sheath blight disease. The treatment of RTNM under the SPAD threshold value 40 obtained the highest yield. While the treatment of SSNM led to the highest nitrogen agronomic efficiency and higher rice yield, and decreased the infestation of sheath blight disease dramatically as well. Nitrogen application regimes and diseases control in rice caused obvious effects on light interception rate, RUE, and HI. Optimal N rate is helpful to get higher light interception rate, RUE, and HI. Disease control with fungicide application decreased and delayed the negative effects of the high N on rice yield formation. SSNM and RTNM under the proper SPAD threshold value obtained highyield with high efficiency and could alleviate environmental pollution in rice production.
参考文献 | 相关文章 | 多维度评价