期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Growth simulation and yield prediction for perennial jujube fruit tree by integrating age into the WOFOST model
BAI Tie-cheng, WANG Tao, ZHANG Nan-nan, CHEN You-qi, Benoit MERCATORIS
Journal of Integrative Agriculture    2020, 19 (3): 721-734.   DOI: 10.1016/S2095-3119(19)62753-X
摘要108)      PDF    收藏
Mathematical models have been widely employed for the simulation of growth dynamics of annual crops, thereby performing yield prediction, but not for fruit tree species such as jujube tree (Zizyphus jujuba).  The objectives of this study were to investigate the potential use of a modified WOFOST model for predicting jujube yield by introducing tree age as a key parameter.  The model was established using data collected from dedicated field experiments performed in 2016–2018.  Simulated growth dynamics of dry weights of leaves, stems, fruits, total biomass and leaf area index (LAI) agreed well with measured values, showing root mean square error (RMSE) values of 0.143, 0.333, 0.366, 0.624 t ha–1 and 0.19, and R2 values of 0.947, 0.976, 0.985, 0.986 and 0.95, respectively.  Simulated phenological development stages for emergence, anthesis and maturity were 2, 3 and 3 days earlier than the observed values, respectively.  In addition, in order to predict the yields of trees with different ages, the weight of new organs (initial buds and roots) in each growing season was introduced as the initial total dry weight (TDWI), which was calculated as averaged, fitted and optimized values of trees with the same age.  The results showed the evolution of the simulated LAI and yields profiled in response to the changes in TDWI.  The modelling performance was significantly improved when it considered TDWI integrated with tree age, showing good global (R2≥0.856, RMSE≤0.68 t ha–1) and local accuracies (mean R2≥0.43, RMSE≤0.70 t ha–1).  Furthermore, the optimized TDWI exhibited the highest precision, with globally validated R2 of 0.891 and RMSE of 0.591 t ha–1, and local mean R2 of 0.57 and RMSE of 0.66 t ha–1, respectively.  The proposed model was not only verified with the confidence to accurately predict yields of jujube, but it can also provide a fundamental strategy for simulating the growth of other fruit trees.
 
参考文献 | 相关文章 | 多维度评价
2. Reactive oxygen species are involved in cell death in wheat roots against powdery mildew
LI Cheng-yang, ZHANG Nan, GUAN Bin, ZHOU Zhu-qing, MEI Fang-zhu
Journal of Integrative Agriculture    2019, 18 (9): 1961-1970.   DOI: 10.1016/S2095-3119(18)62092-1
摘要154)      PDF    收藏
Inoculation of wheat (Triticum aestivum L.) leaves with wheat powdery mildew fungus (Blumeria graminis f. sp. tritici) induces the cell death in adventitious roots.  Reactive oxygen species (ROS) play a key role in respond to biotic stress in plants.  To study the involvement of ROS and the degree of cell death in the wheat roots following inoculation, ROS levels and microstructure of root cells were analyzed in two wheat cultivars that are susceptible (Huamai 8) and resistant
(Shenmai 8) to powdery mildew fungus.  At 18 d after powdery mildew fungus inoculation, only Huamai 8 displayed the leaf lesions, while root cell death occurred in both varieties.  Huamai 8 had a high level of ROS accumulation, which is associated with increased root cell degradation, while in Shenmai 8, there was little ROS accumulation correlating with slight root cell degradation.  The molecular study about the expression levels of ROS scavenging genes (MnSOD and CAT) in wheat roots showed that these genes expression decreased after the leaves of wheat was inoculated.  The difference between Huamai 8
and Shenmai 8 on subcellular localization of H2O2 and O2–· was corresponded with the different down-regulation of the genes encoding for superoxide dismutase and catalase in two wheat cultivars.  These results suggested that ROS were involved in the process by which powdery mildew fungus induced cell death in wheat roots.
参考文献 | 相关文章 | 多维度评价
3. Identification and characterization of the GH3 gene family in maize
ZHANG Dong-feng, ZHANG Nan, ZHONG Tao, WANG Chao, XU Ming-liang, YE Jian-rong
Journal of Integrative Agriculture    2016, 15 (2): 249-261.   DOI: 10.1016/S2095-3119(15)61076-0
摘要2111)      PDF    收藏
The phytohormone auxin plays a central role in coordinating plant growth and development. GH3 is one of the three gene families that respond rapidly during auxin stimulation. Here, we report the identification and characterization of the GH3 gene family in maize. A total of 12 GH3 genes were identified, which are not evenly distributed over the 10 maize chromosomes. Maize GH3 protein sequences share a conserved domain which occupies nearly the entire protein. Diversified cis-elements were found in promoters of maize GH3 genes. In this study, the 12 maize GH3 proteins were primarily classified into two phylogenetic groups, similar to the 13 rice GH3 proteins, while 9 of the 19 Arabidopsis GH3 proteins were observed in the third phylogenetic group. Microarray analysis showed that expression of maize GH3 genes is temporally and spatially modulated. Additionally, maize GH3 genes displayed variable changes at transcript level upon pathogen infection. Results presented here provide insight into the diversification and evolution of GH3 proteins, and lay a foundation for the functional characterization of these GH3 genes in future, especially for elucidating the mechanisms of GH3-mediated pathogenesis.
参考文献 | 相关文章 | 多维度评价
4. Isolation and Characterization of NBS-LRR Class Resistance Homologous Gene from Wheat
ZHANG Nan, WANG Shen, WANG Hai-yan, LIU Da-qun
Journal of Integrative Agriculture    2011, 10 (8): 1151-1158.   DOI: 10.1016/S1671-2927(11)60105-3
摘要1633)      PDF    收藏
One resistance gene analog fragment named RGA-CIN14 was isolated from TcLr19 wheat, which contains kinase-2,kinase-3a, and the GLPL motif of the NBS-spanning region, using degenerated primers according to the nucleotidebinding site (NBS) conserved domain. Based on the RGA-CIN14, a full-length cDNA, CIN14, which was 2 987 bpencoding 880 amino acids, was obtained by using the method of the rapid amplification cDNA ends (RACE). Bioinformaticsanalysis showed that the deduced amino acids of CIN14 protein consisted of a NB-ARC conserved domain and manyleucine-rich repeats (LRR) domains. The phylogenetic tree analysis indicated a considerable identity of the proteinencoded by CIN14 with that of wheat leaf rust resistance gene Lr1, but a lower similarity with Lr21. The expression profileof the CIN14 gene detected by semi-quantitative RT-PCR showed that the CIN14 gene was not induced by Pucciniatriticina and it was a constitutive gene with low abundance in the wheat leaf tissue. The resistance homology sequencewas successfully obtained, which provides the shortcut for cloning of the resistance gene in TcLr19 wheat.
参考文献 | 相关文章 | 多维度评价