期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 天敌昆虫——龟纹瓢虫(鞘翅目:瓢虫科)中国种群的 遗传变异和种群历史动态
WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru
Journal of Integrative Agriculture    2023, 22 (8): 2456-2469.   DOI: 10.1016/j.jia.2022.08.025
摘要349)      PDF    收藏

龟纹瓢虫(鞘翅目:瓢虫科)在中国是一种自然天敌昆虫,捕食范围广泛,常用于害虫治理。然而其在中国区域内遗传模式(遗传变异、种群结构和历史动态)还不清楚,从而阻碍了害虫生物防治的发展进程。种群遗传数据对于天敌生防过程中不同阶段策略的优化具有很大潜力。本研究通过收集中国区域内30个采样区域的462头龟纹瓢虫样本,采用23对微卫星和线粒体COI分子标记,开展了该种的群遗传工作。微卫星数据显示龟纹瓢虫具有中等水平的遗传多样性,线粒体基因则显示出高水平的遗传多样性。与长江流域种群相比,黄河流域种群具有更高的遗传分歧。龟纹瓢虫中国种群未形成显著的地理种群结构,但存在群体分化的迹象,可能与种群间频繁的基因交流有关。种群经历瓶颈后出现扩张,寄主植物——害虫——天敌之间的三级营养关系是种群扩张的重要因素。种群遗传研究在害虫生物防治过程中发挥着重要作用,本研究通过估测种群遗传多样性、种群遗传差异和推种群历史动态,为有效利用天敌昆虫提供重要的遗传信息。

参考文献 | 相关文章 | 多维度评价
2. JIA-2021-0612 不同物候期不同温度组合对长江流域稻米产量和品质形成的影响
TU De-bao JIANG Yang, ZHANG Li-juan, CAI Ming-li, LI Cheng-fang, CAO Cou-gui
Journal of Integrative Agriculture    2022, 21 (10): 2900-2909.   DOI: 10.1016/j.jia.2022.07.056
摘要201)      PDF    收藏
水稻种植区域广以及播种期不一等原因引起的生长季温度不适宜,导致了水稻产量和品质的降低。本研究目的是评估不同物候期温度对水稻产量及品质的影响,以获得长江流域水稻不同物候期适宜温度范围。因此,本研究以区域性品种为研究对象,在长江流域不同生态区开展播期试验,观测比较水稻生育进程、产量和品质的差异。结果表明不同播期以及不同生态区,水稻生育进程、产量和品质具有显著性差异,而这恰好与营养生长期(VT)及前20天灌浆期日平均温度(GT20)显著相关。此外,与VT和GT20相比,水稻幼穗分化期温度(RT)变化差异相对较小。因此,根据不同产量和品质的VT和GT20阈值,将本研究试验结果划分为4种情景(Ⅰ, Ⅱ, Ⅲ, 和 Ⅳ)。其中,情景Ⅰ可获得高的整精米产量和稻米品质;与情景Ⅰ相比,情景Ⅲ和 Ⅳ的整精米产量下降了30.1%和27.6%;情景Ⅱ整精米产量增加不显著,但是其垩白粒率和垩白度要比情景Ⅰ分别高出50.6%和56.3%。综上所述,情景Ⅰ下的VT和GT20组合方式(22.8℃<VT<23.9℃和24.2℃<GT20<27.0℃或3.9℃<VT<25.3℃和4.2℃<GT20<24.9℃),可用于指导长江流域水稻播期调整和水稻适宜品种的选取,以提高该区域的水稻产量和品质。
参考文献 | 相关文章 | 多维度评价
3. Development and identification of glyphosate-tolerant transgenic soybean via direct selection with glyphosate
GUO Bing-fu, HONG Hui-long, HAN Jia-nan, ZHANG Li-juan, LIU Zhang-xiong, GUO Yong, QIU Li-juan
Journal of Integrative Agriculture    2020, 19 (5): 1186-1196.   DOI: 10.1016/S2095-3119(19)62747-4
摘要178)      PDF    收藏
Glyphosate-tolerant soybean is the most widely planted genetically modified crop worldwide.   However, soybean remains recalcitrant to routine transformation because of the low infection efficiency of Agrobacterium to soybean and lack of useful selectable markers.  In this study, several Agrobacterium strains and cell densities were compared by transient expression of the GUS gene.  The results showed that Agrobacterium strain Ag10 at cell densities of OD600 of 0.6–0.9 yielded the highest infection efficiency in Agrobacterium-mediated soybean cotyledonary node transformation system.  Meanwhile, a simple and rapid method was developed for identification of glyphosate tolerance in putative T0 transgenic plants, consisting of spotting plantlets with 1 µL Roundup®.  The whole cycle of genetic transformation could be shortened to about 3 mon by highly efficient selection with glyphosate during the transformation process and application of the spot assay in putative T0 transgenic plantlets.  The transformation frequency ranged from 2.9 to 5.6%.  This study provides an improved protocol for development and identification of glyphosate-tolerant transgenic soybeans.
参考文献 | 相关文章 | 多维度评价
4. First report of a new potato disease caused by Galactomyces candidum F12 in China
SONG Su-qin, Lü Zhuo, WANG Jing, ZHU Jing, GU Mei-ying, TANG Qi-yong, ZHANG Zhi-dong, WANG Wei, ZHANG Li-juan, WANG Bo
Journal of Integrative Agriculture    2020, 19 (10): 2470-2476.   DOI: 10.1016/S2095-3119(20)63257-9
摘要123)      PDF    收藏
Potato (Solanum tuberosum L.) is an important crop throughout the world.  An uncharacterized disease has been observed on potato plants during the growing season and tubers during the storage period from Nileke County, Qitai County and other locations in Xinjiang, China.  A particular fungus was consistently isolated from the infected potato plants and tubers.  Based on its morphology, molecular characteristics, pathogenicity test and internal transcribed spacer (ITS) sequence, the pathogens was identified as Galactomyces candidum F12.  Further study also showed that the hyphae and conidia of the pathogenic fungus grew faster as the temperature was 30°C, pH was 7, soluble starch was used as optimal carbon source and yeast powder as optimal nitrogen source.  In addition, 12-h continuous illumination light was beneficial to the hyphal growth, while 24-h continuous illumination was beneficial to the sporulation of the strain at 30°C.  To our knowledge, this is the first report of Galactomyces candidum causing leaf wilt and postharvest tuber rot on potato in China.
参考文献 | 相关文章 | 多维度评价
5. The biotypes and host shifts of cotton-melon aphids Aphis gossypii in northern China
ZHANG Shuai, LUO Jun-yu, WANG Li, WANG Chun-yi, Lü Li-min, ZHANG Li-juan, ZHU Xiang-zhen, CUI Jin-jie
Journal of Integrative Agriculture    2018, 17 (09): 2066-2073.   DOI: 10.1016/S2095-3119(17)61817-3
摘要493)      PDF    收藏
Received  6 June, 2017    Accepted  13 October, 2017
参考文献 | 相关文章 | 多维度评价
6. Co-treatment with surfactant and sonication significantly improves Agrobacterium-mediated resistant bud formation and transient expression efficiency in soybean
GUO Bing-fu, GUO Yong, WANG Jun, ZHANG Li-juan, JIN Long-guo, HONG Hui-long, CHANG, Ru-zheng, QIU Li-juan
Journal of Integrative Agriculture    2015, 14 (7): 1242-1250.   DOI: 10.1016/S2095-3119(14)60907-2
摘要1969)      PDF    收藏
Soybean is a widely planted genetically modified crop around the world. However, it is still one of the most recalcitrant crops for genetic transformation due to the difficulty of regeneration via organogenesis and some factors that affect the transformation efficiency. The percentages of resistant bud formation and transient expression efficiency are important indexes reflecting the regeneration and transformation efficiency of soybean. In this study, the percentages of resistant bud formation and transient expression of β-glucuronidase (GUS) were compared after treatment with sonication or surfactant and co-treatment with both. The results showed that treatment with either sonication or surfactant increased the percentage of resistant bud formation and transient expression efficiency. The highest percentages were acquired and significantly improved when cotyledon node explants were co-treated with sonication for 2 s and surfactant at 0.02% (v:v) using two different soybean genotypes, Jack and Zhonghuang 10. The improved transformation efficiency of this combination was also evaluated by development of herbicide-tolerant soybeans with transformation efficiency at 2.5–5.7% for different genotypes, which was significantly higher than traditional cotyledonary node method in this study. These results suggested that co-treatment with surfactant and sonication significantly improved the percentages of resistance bud formation, transient expression efficiency and stable transformation efficiency in soybean.
参考文献 | 相关文章 | 多维度评价
7. A 15N-Labeling Study of the Capture of Deep Soil Nitrate from Different Plant Systems
YANG Zhi-xin, WANG Jue, DI Hong-jie, ZHANG Li-juan , JU Xiao-tang
Journal of Integrative Agriculture    2014, 13 (1): 167-176.   DOI: 10.1016/S2095-3119(13)60402-5
摘要1648)      PDF    收藏
The objective of this study was to determine the efficiency of different plant systems in capturing deep soil nitrate (NO3 -) to reduce NO3 - leaching in a field plot experiment using 15N labelling. The study was conducted on a calcareous alluvial soil on the North China Plains and the plant systems evaluated included alfalfa (Medicago sativa), American black poplar (Populus nigra) and cocksfoot (Dactylis). 15N-labelled N fertilizer was injected to 90 cm depth to determine the recovery of 15N by the plants. With conventional water and nutrient management, the total recovery of 15N-labeled NO3 --N was 23.4% by alfalfa after two consecutive growth years. The recovery was significantly higher than those by American black poplar (12.3%) and cocksfoot (11.4%). The highest proportion of soil residual 15N from the labeled fertilizer N (%Ndff) was detected around 90 cm soil depth at the time of the 1st year harvest and at 110-130 cm soil depth at time of the 2nd year harvest. Soil %Ndff in 0-80 cm depth was significantly higher in the alfalfa treatment than those in all the other treatments. The soil %Ndff below 100 cm depth was much lower in the alfalfa than those in all the other treatments. These results indicated that 15N leaching losses in the alfalfa treatment were significantly lower than by those in the black poplar and cocksfoot treatments, due to the higher root density located in nitrate labeling zone of soil profile. In conclusion, alfalfa may be used as a plant to capture deep soil NO3 - left from previous crops to reduce NO3 - leaching in high intensity crop cultivation systems of North China Plain.
参考文献 | 相关文章 | 多维度评价