期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Residue management induced changes in soil organic carbon and total nitrogen under different tillage practices in the North China Plain
PU Chao, KAN Zheng-rong, LIU Peng, MA Shou-tian, QI Jian-ying, ZHAO Xin, ZHANG Hai-lin
Journal of Integrative Agriculture    2019, 18 (6): 1337-1347.   DOI: 10.1016/S2095-3119(18)62079-9
摘要247)      PDF    收藏
Crop residue retention has been considered a practicable strategy to improve soil organic carbon (SOC) and total nitrogen (TN), but the effectiveness of residue retention might be different under varied tillage practices.  To evaluate the effects of residue management on the distribution and stocks of SOC and TN under different tillage practices, a bifactorial experiment with three levels for tillage practices (no-tillage, rotary tillage, and conventional tillage) and two levels for residue managements (residue retention and residue removal) was conducted in the North China Plain (NCP).  Results showed that after a short experimental duration (3–4 years), concentrations of SOC and TN in the 0–10 cm layer were higher under no-tillage than under conventional tillage, no matter whether crop residues were retained or not.  Residue retention increased SOC and TN concentrations in the upper layers of soil to some degree for all tillage practices, as compared with residue removal, with the greatest increment of SOC concentration occurred in the 0–10 cm layer under rotary tillage, but in the 10–30 cm layer under conventional tillage.  The stocks of SOC in the 0–50 cm depth increased from 49.89 Mg ha–1 with residue removal to 53.03 Mg ha–1 with residue retention.  However, no-tillage did not increase SOC stock to a depth of 50 cm relative to conventional tillage, and increased only by 5.35% as compared with rotary tillage.  Thus, residue retention may contribute more towards SOC sequestration than no-tillage.  Furthermore, the combination between residue retention and no-tillage has the greatest advantage in enhancing SOC and TN in the NCP region.
参考文献 | 相关文章 | 多维度评价
2. Soil carbon storage and stratification under different tillage/ residue-management practices in double rice cropping system
CHEN Zhong-du, ZHANG Hai-lin, S Batsile Dikgwatlhe, XUE Jian-fu, QIU Kang-cheng, TANG Hai-ming, CHEN fu
Journal of Integrative Agriculture    2015, 14 (8): 1551-1560.   DOI: 10.1016/S2095-3119(15)61068-1
摘要2109)      PDF    收藏
The importance of soil organic carbon (SOC) sequestration in agricultural soils as climate-change-mitigating strategy has become an area of focus by the scientific community in relation to soil management. This study was conducted to determine the temporal effect of different tillage systems and residue management on distribution, storage and stratification of SOC, and the yield of rice under double rice (Oryza sativa L.) cropping system in the southern China. A tillage experiment was conducted in the southern China during 2005–2011, including plow tillage with residue removed (PT0), plow tillage with residue retention (PT), rotary tillage with residue retention (RT), and no-till with residue retention on the surface (NT). The soil samples were obtained at the harvesting of late rice in October of 2005, 2007 and 2011. Multiple-year residue return application significantly increased rice yields for the two rice-cropping systems; yields of early and late rice were higher under RT than those under other tillage systems in both years in 2011. Compared with PT0, SOC stocks were increased in soil under NT at 0–5, 5–10, 10–20, and 20–30 cm depths by 33.8, 4.1, 6.6, and 53.3%, respectively, in 2011. SOC stocks under RT were higher than these under other tillage treatments at 0–30 cm depth. SOC stocks in soil under PT were higher than those under PT0 in the 0–5 and 20–30 cm soil layers. Therefore, crop residues played an important role in SOC management, and improvement of soil quality. In the 0–20 cm layer, the stratification ratio (SR) of SOC followed the order NT>RT>PT>PT0; when the 0–30 cm layer was considered, NT also had the highest SR of SOC, but the SR of SOC under PT was higher than that under RT with a multiple-year tillage practice. Therefore, the notion that conservation tillage lead to higher SOC stocks and soil quality than plowed systems requires cautious scrutiny. Nevertheless, some benefits associated with RT system present a greater potential for its adoption in view of the multiple-year environmental sustainability under double rice cropping system in the southern China.
参考文献 | 相关文章 | 多维度评价
3. Net energy yield and carbon footprint of summer corn under different N fertilizer rates in the North China Plain
WANG Zhan-biao, WEN Xin-ya, ZHANG Hai-lin, LU Xiao-hong, CHEN Fu
Journal of Integrative Agriculture    2015, 14 (8): 1534-1541.   DOI: 10.1016/S2095-3119(15)61042-5
摘要2054)      PDF    收藏
Excessive use of N fertilizer in intensive agriculture can increase crop yield and at the same time cause high carbon (C) emissions. This study was conducted to determine optimized N fertilizer application for high grain yield and lower C emissions in summer corn (Zea mays L.). A field experiment, including 0 (N0), 75 (N75), 150 (N150), 225 (N225), and 300 (N300) kg N ha–1 treatments, was carried out during 2010–2012 in the North China Plain (NCP). The results showed that grain yield, input energy, greenhouse gas (GHG) emissions, and carbon footprint (CF) were all increased with the increase of N rate, except net energy yield (NEY). The treatment of N225 had the highest grain yield (10 364.7 kg ha–1) and NEY (6.8%), but the CF (0.25) was lower than that of N300, which indicates that a rate of 225 kg N ha–1 can be optimal for summer corn in NCP. Comparing GHG emision compontents, N fertilizer (0–51.1%) was the highest and followed by electricity for irrigation (19.73–49.35%). We conclude that optimazing N fertilizer application rate and reducing electricity for irrigation are the two key measures to increase crop yield, improve energy efficiency and decrease GHG emissions in corn production.
参考文献 | 相关文章 | 多维度评价
4. Applying a salinity response function and zoning saline land for three field crops: a case study in the Hetao Irrigation District, Inner Mongolia, China
TONG Wen-jie1, CHEN Xiao-li2, WEN Xin-ya1, CHEN Fu1, ZHANG Hai-lin1, CHU Qing-quan1, Shadrack Batsile Dikgwatlhe1
Journal of Integrative Agriculture    2015, 14 (1): 178-189.   DOI: 10.1016/S2095-3119(14)60761-9
摘要1895)      PDF    收藏
Salinity is one of the major abiotic factors affecting the growth and productivity of crops in Hetao Irrigation District, China. In this study, the salinity tolerances of three local crops, wheat (Triticum aestinum L.), maize (Zea mays L.) and sunflower (Helianthus annuus L.), growing in 76 farm fields are evaluated with modified discount function. Salinity ecological zones appropriate for these local crops are characterized and a case study is presented for crop salinity ecological zoning. The results show that the yield reductions of wheat, maize and sunflower when grown in saline soils are attributed primarily to a reduction in spikelet number, 1 000-grain weight and seed number per head, respectively. Sunflower is the most tolerant crop among the three which had a salinity tolerance index (ST-index) of 12.24, followed by spring maize and spring wheat with ST-Indices of 9.00 and 7.43, respectively. According to the crop salinity tolerance results, the arable land in the Heping Village of this district was subdivided into four salinity ecological zones: the most suitable, suitable, sub-suitable and unsuitable zones. The area proportion of the most suitable zone for wheat, maize and sunflower within the Heping Village was 27.5, 46.5 and 77.5%, respectively. Most of the most suitable zone occurred in the western part of the village. The results of this study provide the scientific basis for optimizing the local major crop distribution and improving cultural practices management in Hetao Irrigation District.
参考文献 | 相关文章 | 多维度评价
5. Cropping Pattern Modifications Change Water Resource Demands in the Beijing Metropolitan Area
HUANG Jing, Bradley GRidoutt, XU Chang-chun, ZHANG Hai-lin , CHEN Fu
Journal of Integrative Agriculture    2012, 12 (11): 1914-1923.   DOI: 10.1016/S1671-2927(00)8727
摘要1357)      PDF    收藏
Adequate freshwater supply has become an issue of increasing local and international concern. Reducing water use in agriculture, which is the largest water using sector of the economy, is both important and urgent. The aim of this paper was to quantify how recent cropping pattern changes have influenced water resources in the great Beijing metropolitan area, an expanding megacity which also includes rural counties. Crop production affects blue water use through water consumption and water pollution, the latter assessed here using a critical dilution method. From 1990 to 2010, the total blue water used by crop production declined due to a decrease in overall cropped area, initially in response to local government policies favouring urban development. However, the average blue water use per hectare increased from 2 112 m3 ha-1 yr-1 in 1990 to 2 764 m3 ha-1 yr-1 in 2003, largely as the result of a transition from cereal to vegetable crops, and in particular an increase in intensively managed plastic and glass covered vegetable production systems. Current policies aim to conserve agricultural land, in the interests of food security, and to stimulate cereal production systems with higher ecosystem services provision. As such, in 2010 the average blue water use was 2 425 m3 ha-1 yr-1. These results demonstrate that cropping pattern changes in peri-urban regions and rural communities surrounding the Beijing metropolitan area can have a substantial impact on water resources. They also highlight the tradeoffs between food production and urban and industrial water supply and the need for integrated policy development.
参考文献 | 相关文章 | 多维度评价