期刊
出版年
关键词
结果中检索
(((YUAN Shu-fen[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
The causes and impacts for heat stress in spring maize during grain filling in the North China Plain - A review
TAO Zhi-qiang, CHEN Yuan-quan, LI Chao, ZOU Juan-xiu, YAN Peng, YUAN Shu-fen, WU Xia, SUI Peng
Journal of Integrative Agriculture 2016, 15 (
12
): 2677-2687. DOI:
10.1016/S2095-3119(16)61409-0
摘要
(
1065
)
PDF
可视化
收藏
High-temperature stress (HTS) at the grain-filling stage in spring maize (
Zea mays
L.) is the main obstacle to increasing productivity in the North China Plain (NCP). To solve this problem, the physiological mechanisms of HTS, and its causes and impacts, must be understood. The HTS threshold of the duration and rate in grain filling, photosynthetic characteristics (e.g., the thermal stability of thylakoid membrane, chlorophyll and electron transfer, photosynthetic carbon assimilation), water status (e.g., leaf water potential, turgor and leaf relative water content) and signal transduction in maize are reviewed. The HTS threshold for spring maize is highly desirable to be appraised to prevent damages by unfavorable temperatures during grain filling in this region. HTS has negative impacts on maize photosynthesis by damaging the stability of the thylakoid membrane structure and degrading chlorophyll, which reduces light energy absorption, transfer and photosynthetic carbon assimilation. In addition, photosynthesis can be deleteriously affected due to inhibited root growth under HTS in which plants decrease their water-absorbing capacity, leaf water potential, turgor, leaf relative water content, and stomatal conductance. Inhibited photosynthesis decrease the supply of photosynthates to the grain, leading to falling of kernel weight and even grain yield. However, maize does not respond passively to HTS. The plant transduces the abscisic acid (ABA) signal to express heat shock proteins (HSPs), which are molecular chaperones that participate in protein refolding and degradation caused by HTS. HSPs stabilize target protein configurations and indirectly improve thylakoid membrane structure stability, light energy absorption and passing, electron transport, and fixed carbon assimilation, leading to improved photosynthesis. ABA also induces stomatal closure to maintain a good water status for photosynthesis. Based on understanding of such mechanisms, strategies for alleviating HTS at the grain-filling stage in spring maize are summarized. Eight strategies have the potential to improve the ability of spring maize to avoid or tolerate HTS in this study, e.g., adjusting sowing date to avoid HTS, breeding heat-tolerance varieties, and tillage methods, optimizing irrigation, heat acclimation, regulating chemicals, nutritional management, and planting geometric design to tolerate HTS. Based on the single technology breakthrough, a comprehensive integrated technical system is needed to improve heat tolerance and increase the spring maize yield in the NCP.
参考文献
|
相关文章
|
多维度评价
Select
2.
Subsoiling and Ridge Tillage Alleviate the High Temperature Stress in Spring Maize in the North China Plain
TAO Zhi-qiang, SUI Peng, CHEN Yuan-quan, LI Chao, NIE Zi-jin, YUAN Shu-fen, SHI Jiangtao
Journal of Integrative Agriculture 2013, 12 (
12
): 2179-2188. DOI:
10.1016/S2095-3119(13)60347-0
摘要
(
1221
)
PDF
可视化
收藏
High temperature stress (HTS) on spring maize (Zea mays L.) during the filling stage is the key factor that limits the yield increase in the North China Plain (NCP). Subsoiling (SS) and ridge tillage (R) were introduced to enhance the ability of spring maize to resist HTS during the filling stage. The field experiments were conducted during the 2011 and 2012 maize growing seasons at Wuqiao County, Hebei Province, China. Compared with rotary tillage (RT), the net photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll relative content (SPAD) of maize leaves was increased by 40.0, 42.6, 12.8, and 29.7% under SS, and increased by 20.4, 20.0, 5.4, and 14.2% under R, repectively. However, the treatments reduce the intercellular CO2 concentration under HTS. The SS and R treatments increased the relative water content (RWC) by 11.9 and 6.2%, and the water use efficiency (WUE) by 24.3 and 14.3%, respectively, compared with RT. The SS treatment increased the root length density and soil moisture in the 0-80 cm soil profile, whereas the R treatment increased the root length density and soil moisture in the 0-40 cm soil profile compared with the RT treatment. Compared with 2011, the number of days with temperatures 33°C was more 2 d and the mean day temperature was higher 0.9°C than that in 2012, whereas the plant yield decreased by 2.5, 8.5 and 10.9%, the net photosynthetic rate reduced by 7.5, 10.5 and 18.0%, the RWC reduced by 3.9, 5.6 and 6.2%, and the WUE at leaf level reduced by 1.8, 5.2 and 13.1% in the SS, R and RT treatments, respectively. Both the root length density and the soil moisture also decreased at different levels. The yield, photosynthetic rate, plant water status, root length density, and soil moisture under the SS and R treatments declined less than that under the RT treatment. The results indicated that SS and R can enhance the HTS resistance of spring maize during the filling stage, and led to higher yield by directly improving soil moisture and root growth and indirectly improving plant water status, photosynthesis and grain filling. The study can provide a theoretical basis for improving yield of maize by adjusting soil tillage in the NCP.
参考文献
|
相关文章
|
多维度评价