期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Pyramiding blast, bacterial blight and brown planthopper resistance genes in rice restorer lines
JI Zhi-juan, Yang Shu-dong, ZENG Yu-xiang, LIANG Yan, YANG Chang-deng, QIAN Qian
Journal of Integrative Agriculture    2016, 15 (7): 1432-1440.   DOI: 10.1016/S2095-3119(15)61165-0
摘要2000)      PDF    收藏
     Rice blast, bacterial blight (BB) and brown planthopper (BPH) are the three main pests of rice. This study investigated pyramiding genes resistant to blast, BB and BPH to develop restorer lines. Ten new lines with blast, BB and/or BPH resistance genes were developed using marker-assisted selection (MAS) technique and agronomic trait selection (ATS) method. Only HR13 with resistance genes to blast, BB and BPH was obtained. In addition to blast and BB resistance, four lines (HR39, HR41, HR42, HR43) demonstrated moderate resistance to BPH, but MAS for BPH resistance genes were not conducted in developing these four lines. These data suggested that there were unknown elite BPH resistance genes in the Zhongzu 14 donor parent. A more effective defense was demonstrated in the lines with Pi1 and Pi2 genes although the weather in 2012 was favorable to disease incidence. Blast resistance of the lines with a single resistance gene, Pita, was easily influenced by the weather. Overall, the information obtained through pyramiding multiple resistance genes on developing the restorer lines is helpful for rice resistance breeding.
参考文献 | 相关文章 | 多维度评价
2. Mapping resistant QTLs for rice sheath blight disease with a doubled haploid population
ZENG Yu-xiang, XIA Ling-zhi, WEN Zhi-hua, JI Zhi-juan, ZENG Da-li, QIAN Qian, YANG Chang-deng
Journal of Integrative Agriculture    2015, 14 (5): 801-810.   DOI: 10.1016/S2095-3119(14)60909-6
摘要2874)      PDF    收藏
Sheath blight (SB) disease, caused by Rhizoctonia solani Kühn, is one of the most serious diseases causing rice (Oryza sativa L.) yield loss worldwide. A doubled haploid (DH) population was constructed from a cross between a japonica variety CJ06 and an indica variety TN1, and to analyze the quantitative trait loci (QTLs) for SB resistance under three different environments (environments 1–3). Two traits were recorded to evaluate the SB resistance, namely lesion height (LH) and disease rating (DR). Based on field evaluation of SB resistance and a genetic map constructed with 214 markers, a total of eight QTLs were identified for LH and eight QTLs for DR under three environments, respectively. The QTLs for LH were anchored on chromosomes 1, 3, 4, 5, 6, and 8, and explained 4.35–17.53% of the phenotypic variation. The SB resistance allele of qHNLH4 from TN1 decreased LH by 3.08 cm, and contributed to 17.53% of the variation at environment 1. The QTL for LH (qHZaLH8) detected on chromosome 8 in environment 2 explained 16.71% of the variation, and the resistance allele from CJ06 reduced LH by 4.4 cm. Eight QTLs for DR were identified on chromosomes 1, 5, 6, 8, 9, 11, and 12 under three conditions with the explained variation from 2.0 to 11.27%. The QTL for DR (qHZaDR8), which explained variation of 11.27%, was located in the same interval as that of qHZaLH8, both QTLs were detected in environment 2. A total of six pairs of digenic epistatic loci for DR were detected in three conditions, but no epistatic locus was observed for LH. In addition, we detected 12 QTLs for plant height (PH) in three environments. None of the PH-QTLs were co-located with the SB-QTLs. The results facilitate our understanding of the genetic basis for SB resistance in rice.
参考文献 | 相关文章 | 多维度评价