期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Investigating the mechanisms of glyphosate resistance in goosegrass (Eleusine indica) population from South China
ZHANG Chun, FENG Li, HE Ting-ting, YANG Cai-hong, CHEN Guo-qi, TIAN Xing-shan
Journal of Integrative Agriculture    2015, 14 (5): 909-918.   DOI: 10.1016/S2095-3119(14)60890-X
摘要2010)      PDF    收藏
Glyphosate has been used worldwide for nearly 40 years, and 30 types of resistant weeds have been reported. Glyphosate is mass-produced and widely used in China, but few studies and reports on glyphosate-resistant weeds and resistance mechanisms exist. Previous studies found a goosegrass species with high glyphosate resistance from orchards in South China and its glyphosate resistant mechanism was described in this study. The cDNA of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19), the target enzyme of glyphosate, was cloned from the glyphosate-resistant and -susceptible goosegrass, respectively, and referred as EPSPS-R and EPSPS-S. The Pro106 residue was known to be involved in the glyphosate resistance in most goosegrass populations. However, sequence analysis did not find the mutation at the Pro106 residue in the R biotype EPSPS amino acid sequence. The residue 133 and 382 was mutated in the R biotype EPSPS amino acid sequence instead, but it did not affect the EPSPS-S and EPSPS-R genes sensitivities to glyphosate. RT-PCR and Western blot analyses suggested that EPSPS mRNA and protein are mainly present in the shoot tissues both in the R and S goosegrass biotypes. The EPSPS-R rapidly responds to the glyphosate in R-biotype goosegrass and the induced expression was detected at 12 h post glyphosate treatment. The mRNA and protein expression of EPSPS-R increased constantly as the increasing concentration of glyphosate. However, the expression of the EPSPS-S was not induced significantly by glyphosate in the S goosegrass biotype. Quantification of real-time PCR results showed that the copy number of the EPSPS in R-biotype goosegrass was 4.7 times higher than that in the S goosegrass biotype. All the results implied that EPSPS gene amplification might mainly caused the glyphosate resistance of a goosegrass population collected from orchards in South China.
参考文献 | 相关文章 | 多维度评价
2. Use of chlorophyll fluorescence and P700 absorbance to rapidly detect glyphosate resistance in goosegrass (Eleusine indica)
ZHANG Tai-jie, FENG Li, TIAN Xing-shan, YANG Cai-hong, GAO Jia-dong
Journal of Integrative Agriculture    2015, 14 (4): 714-723.   DOI: 10.1016/S2095-3119(14)60869-8
摘要1797)      PDF    收藏
The rapid detection of glyphosate resistance in goosegrass (Eleusine indica) will enhance our ability to respond to new resistant populations of this major weed. Chlorophyll fluorescence (Fluo) and P700 (reaction center chlorophyll of photosystem I) absorbance were analyzed in one biotype of goosegrass that is resistant to glyphosate and in another that remains sensitive to the herbicide. Both biotypes were treated with a foliar spray of glyphosate. Differences in photosystem II maximum quantum yield (Fv/Fm), effective photochemical quantum yield (Y(II)), and non-photochemical quenching (NPQ) between the biotypes increased over time. Values for Fv/Fm and Y(II) differed between the two biotypes 24 h after treatment (HAT). Differentiated activities and energy dissipation processes of photosystem II (PSII) and energy dissipation processes of photosystem I (PSI) were manifested in the two biotypes 24 HAT with 20 mmol L–1 glyphosate. Differentiated energy dissipation processes of PSI were still apparent 24 HAT with 200 mmol L–1 glyphosate. These results indicate that the Fluo parameters related to PSII activity and energy dissipation and the P700 parameters related to energy dissipation are suitable indicators that enable rapid detection of glyphosate resistance in goosegrass.
参考文献 | 相关文章 | 多维度评价