期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Effect of Phosphorus Fertilization to P Uptake and Dry Matter Accumulation in Soybean with Different P Efficiencies
AO Xue, GUO Xiao-hong, ZHU Qian, ZHANG Hui-jun, WANG Hai-ying, MA Zhao-hui, HAN, Xiao-ri, ZHAO Ming-hui , XIE Fu-ti
Journal of Integrative Agriculture    2014, 13 (2): 326-334.   DOI: 10.1016/S2095-3119(13)60390-1
摘要2376)      PDF    收藏
Phosphorus (P) is an essential element for plant growth and yield. Improving phosphorus use efficiency of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. Soybean (Glycine max (L.) Merr.) is sensitive to phosphorus (P) in the whole life history. Soybean cultivars with different P efficiencies were used to study P uptake and dry matter accumulation under different P levels. Under low P conditions, the P contents of leaf in high P efficiency cultivars were greater than those in low P efficiency cultivars at the branching stage. The P accumulation in stems of high P efficiency cultivars and in leaves of low P efficiency cultivars increased with increasing P concentration at the branching stage. At the late podding stage, the P accumulation of seeds in high and low P efficiency cultivars were 22.5 and 26.0%, respectively; and at the mature stage were 69.8 and 74.2%, respectively. In average, the P accumulation in whole plants and each organ was improved by 24.4% in high P efficiency cultivars compared to low P efficiency cultivars. The biomass between high and low P efficiency cultivars were the same under extended P condition, while a significant difference was observed at late pod filling stage. At the pod setting stage, the biomass of high P efficiency cultivars were significant greater (17.4%) than those of low P efficiency cultivars under high P condition. Meanwhile, under optimum growth conditions, there was little difference of biomass between the two types of cultivars, however, the P agronomic efficiency and P harvest index were significant higher in high P efficiency cultivars than those in low P efficiency cultivars.
参考文献 | 相关文章 | 多维度评价
2. Study on Plant Morphological Traits and Production Characteristics of Super High-Yielding Soybean
AO Xue, ZHAO Ming-hui, ZHU Qian, LI Jie, ZHANG Hui-jun, WANG Hai-ying, YU Cui-mei, LI Chunhong, YAO Xing-dong, XIE Fu-ti , HAN Xiao-ri
Journal of Integrative Agriculture    2013, 12 (7): 1173-1182.   DOI: 10.1016/S2095-3119(13)60444-X
摘要1486)      PDF    收藏
Super high-yielding soybean cultivar Liaodou 14, soybean cultivars from Ohio in the United States, and the common soybean cultivars from Liaoning Province, China, with similar geographic latitudes and identical pod-bearing habits were used as the study materials for a comparison of morphological traits and production characteristics to provide a theoretical basis for the breeding of improved super high-yielding soybean cultivars. Using a randomized block design, different soybean cultivars from the same latitude were compared under conventional and unconventional treatments for their production characteristics, including morphological traits, leaf area index (LAI), net photosynthesis rate, and dry matter accumulation. The specific characteristics of the super high-yielding soybean cultivar Liaodou 14 were analyzed. The results showed that the plant height of Liaodou 14 was significantly lower than that of the common cultivars from Liaoning, whereas the number of its main-stem nodes was higher than that of the cultivars from Ohio or Liaoning. A high pod density was observed in Liaodou 14 under conventional treatments. Under both conventional and unconventional treatments, the branch number of Liaodou 14 was markedly higher than that of the common cultivars from Liaoning, and its branch length and leaf inclination angle were significantly higher than those of common cultivars from Liaoning or Ohio. Only small changes in the leaf inclination angle were observed in Liaodou 14 treated with conventional or unconventional methods. Under each treatment, Liaodou 14 exhibited the lowest amplitude of reduction in SPAD values and net photosynthesis rates from the grain-filling to ripening stages; the cultivars from Ohio and the common cultivars from Liaoning exhibited more significant reductions. Liaodou 14 reached its peak LAI later than the other cultivars but maintained its LAI at a higher level for a longer duration. Under both conventional and unconventional treatments, Liaodou 14 produced a higher yield than the other two cultivars, with significant differences from the Ohio cultivars. In summary, super high-yielding soybean cultivars have several main features: suitable plant height, high pod density, good leaf structure with strong functionality, and slow leaf senescence at the late reproductive stage, which is conducive to the accumulation of dry matter and improved yield.
参考文献 | 相关文章 | 多维度评价
3. Regulation of Calcium on Peanut Photosynthesis Under Low Night Temperature Stress
LIU Yi-fei, HAN Xiao-ri, ZHAN Xiu-mei, YANG Jin-feng, WANG Yu-zhi, SONG Qiao-bo , CHEN
Journal of Integrative Agriculture    2013, 12 (12): 2172-2178.   DOI: 10.1016/S2095-3119(13)60411-6
摘要1356)      PDF    收藏
The effects of different levels of CaCl2 on photosynthesis under low night temperature (8°C) stress in peanuts were studied in order to find out the appropriate concentration of Ca2+ through the artificial climate chamber potted culture test. The results indicated that Ca2+, by means of improving the stomatal conductivity of peanut leaves under low night temperature stress, may mitigate the decline of photosynthetic rate in the peanut leaves. The regulation with 15 mmol L-1 CaCl2 (Ca15) was the most effective, compared with other treatments. Subsequently, the improvement of Ca2+ on peanut photosynthesis under low night temperature stress was validated further through spraying with Ca15, Ca2+ chelator (ethylene glycol bis(2-aminoethyl) tetraacetic acid; EGTA) and calmodulin antagonists (trifluonerazine; TFP). And CaM (Ca2+-modulin) played an important role in the nutritional signal transduction for Ca2+ mitigating photosynthesis limitations in peanuts under low night temperature stress.
参考文献 | 相关文章 | 多维度评价