期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Estimates on nitrogen uptake in the subsequent wheat by above-ground and root residue and rhizodeposition of using peanut labeled with 15N isotope on the North China Plain
ZHANG Kai, ZHAO Jie, WANG Xi-quan, XU He-shui, ZANG Hua-dong, LIU Jing-na, HU Yue-gao, ZENG Zhao-hai
Journal of Integrative Agriculture    2019, 18 (3): 571-579.   DOI: 10.1016/S2095-3119(18)62112-4
摘要262)      PDF(pc) (449KB)(205)    收藏
Leguminous crops play a vital role in enhancing crop yield and improving soil fertility.  Therefore, it can be used as an organic N source for improving soil fertility.  The purpose of this study was to (i) quantify the amounts of N derived from rhizodeposition, root and above-ground biomass of peanut residue in comparison with wheat and (ii) estimate the effect of the residual N on the wheat-growing season in the subsequent year.  The plants of peanut and wheat were stem fed with 15N urea using the cotton-wick method at the Wuqiao Station of China Agricultural University in 2014.  The experiment consisted of four residue-returning strategies in a randomized complete-block design: (i) no return of crop residue (CR0); (ii) return of above-ground biomass of peanut crop (CR1); (iii) return of peanut root biomass (CR2); and (iv) return of all residue of the whole peanut plant (CR3).  The 31.5 and 21% of the labeled 15N isotope were accumulated in the above-ground tissues (leaves and stems) of peanuts and wheat, respectively.  N rhizodeposition of peanuts and wheat accounted for 14.91 and 3.61% of the BG15N, respectively.  The 15N from the below-ground 15N -labeled of peanuts were supplied 11.3, 5.9, 13.5, and 6.1% of in the CR0, CR1, CR2, and CR3 treatments, respectively.  Peanut straw contributes a significant proportion of N to the soil through the decomposition of plant residues and N rhizodeposition.  With the current production level on the NCP, it is estimated that peanut straw can potentially replace 104 500 tons of synthetic N fertilizer per year.  The inclusion of peanut in rotation with cereal can significantly reduce the use of N fertilizer and enhance the system sustainability.

 
参考文献 | 相关文章 | 多维度评价
2. Winter cover crops alter methanotrophs community structure in a double-rice paddy soil
LIU Jing-na, ZHU Bo, YI Li-xia, DAI Hong-cui, XU He-shui, ZHANG Kai, HU Yue-gao, ZENG Zhao-hai
Journal of Integrative Agriculture    2016, 15 (3): 553-565.   DOI: 10.1016/S2095-3119(15)61206-0
摘要2200)      PDF    收藏
Methanotrophs play a vital role in the mitigation of methane emission from soils. However, the influences of cover crops incorporation on paddy soil methanotrophic community structure have not been fully understood. In this study, the impacts of two winter cover crops (Chinese milk vetch (Astragalus sinicus L.) and ryegrass (Lolium multiflorum Lam.), representing leguminous and non-leguminous cover crops, respectively) on community structure and abundance of methanotrophs were evaluated by using PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and real-time PCR technology in a double-rice cropping system from South China. Four treatments were established in a completely randomized block design: 1) double-rice cropping without nitrogen fertilizer application, CK; 2) double-rice cropping with chemical nitrogen fertilizer application (200 kg ha–1 urea for entire double-rice season), CF; 3) Chinese milk vetch cropping followed by double-rice cultivation with Chinese milk vetch incorporation, MV; 4) ryegrass cropping followed by double-rice cultivation with ryegrass incorporation, RG. Results showed that cultivating Chinese milk vetch and ryegrass in fallow season decreased soil bulk density and increased rice yield in different extents by comparison with CK. Additionally, methanotrophic bacterial abundance and community structure changed significantly with rice growth. Methanotrophic bacterial pmoA gene copies in four treatments were higher during late-rice season (3.18×107 to 10.28×107 copies g–1 dry soil) by comparison with early-rice season (2.1×107 to 9.62×107 copies g–1 dry soil). Type I methanotrophs absolutely predominated during early-rice season. However, the advantage of type I methanotrophs kept narrowing during entire double-rice season and both types I and II methanotrophs dominated at later stage of late-rice.
参考文献 | 相关文章 | 多维度评价
3. Non-leguminous winter cover crop and nitrogen rate in relation to double rice grain yield and nitrogen uptake in Dongting Lake Plain, Hunan Province, China
ZHU Bo, YI Li-xia, XU He-shui, GUO Li-mei, HU Yue-gao, ZENG Zhao-hai, CHEN Fu, LIU Zhang-yong
Journal of Integrative Agriculture    2016, 15 (11): 2507-2514.   DOI: 10.1016/S2095-3119(16)61331-X
摘要1264)      PDF    收藏
      Annual ryegrass (Lolium multiflorum Lam.), a non-leguminous winter cover crop, has been adopted to absorb soil native N to minimize N loss from an intensive double rice cropping system in southern China, but a little is known about its effects on rice grain yield and rice N use efficiency. In this study, effects of ryegrass on double rice yield, N uptake and use efficiency were measured under different fertilizer N rates. A 3-year (2009–2011) field experiment arranged in a split-plot design was undertaken. Main plots were ryegrass (RG) as a winter cover crop and winter fallow (WF) without weed. Subplots were three N treatments for each rice season: 0 (N0), 100 (N100) and 200 kg N ha–1 (N200). In the 3-year experiment, RG reduced grain yield and plant N uptake for early rice (0.4–1.7 t ha–1 for grain yield and 4.6–20.3 kg ha–1 for N uptake) and double rice (0.6–2.0 t ha–1 for grain yield and 6.3–27.0 kg ha–1 for N uptake) when compared with WF among different N rates. Yield and N uptake decrease due to RG was smaller in N100 and N200 plots than in N0 plots. The reduction in early rice grain yield in RG plots was associated with decrease number of panicles. Agronomic N use efficiency and fertilizer N recovery efficiency were higher in RG plots than winter fallow for early rice and double rice among different N rates and experimental years. RG tended to have little effect on grain yield, N uptake, agronomic N use efficiency, and fertilizer N recovery efficiency in the late rice season. These results suggest that ryegrass may reduce grain yield while it improves rice N use efficiency in a double rice cropping system.
参考文献 | 相关文章 | 多维度评价