期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Identification of additional QTLs for flowering time by removing the effect of the maturity gene E1 in soybean
LU Si-jia, LI Ying, WANG Jia-lin, NAN Hai-yang, CAO Dong, LI Xiao-ming, SHI Dan-ning, FANG Chao, SHI Xin-yi, YUAN Xiao-hui, Jun Abe, LIU Bao-hui, KONG Fan-jiang
Journal of Integrative Agriculture    2016, 15 (1): 42-49.   DOI: 10.1016/S2095-3119(15)61046-2
摘要2078)      PDF    收藏
The adaptability of soybean to be grown at a wide range of latitudes is attributed to natural variation in the major genes and quantitative trait loci (QTLs) that control flowering time and maturity. Thus, the identification of genes controlling flowering time and maturity and the understanding of their molecular basis are critical for improving soybean productivity. However, due to the great effect of the major maturity gene E1 on flowering time, it is difficult to detect other small-effect QTLs. In this study, aiming to reduce the effect of the QTL, associated with the E1 gene, on the detection of other QTLs, we divided a population of 96 recombinant inbred lines (RILs) into two sub-populations: one with the E1 allele and another with the e1nl allele. Compared with the results of using all 96 recombinant inbred lines, additional QTLs for flowering time were identified in the sub-populations, two (qFT-B1 and qFT-H) in RILs with the E1 allele and one (qFT-J-2) in the RILs with the e1nl allele, respectively. The three QTLs, qFT-B1, qFT-H and qFT-J-2 were true QTLs and played an important role in the regulation of growth period. Our data provides valuable information for the genetic mapping and gene cloning of traits controlling flowering time and maturity and will help a better understanding of the mechanism of photoperiod-regulated flowering and molecular breeding in soybean.
参考文献 | 相关文章 | 多维度评价
2. MicroRNAs Involved in the Pathogenesis of Phytophthora Root Rot of Soybean (Glycine max)
WANG Jing*, LIU Chun-yan*, ZHANG Li-wei, WANG Jia-lin, HU Guo-hua, DING Jun-jie , CHEN Qing-shan
Journal of Integrative Agriculture    2011, 10 (8): 1159-1167.   DOI: 10.1016/S1671-2927(11)60106-5
摘要3391)      PDF    收藏
Phytophthora root rot is one of the most prevalent diseases in the world, which can infect the seedlings and plants, withsubstantial negative impact on soybean yield and quality. MicroRNAs (miRNAs) are a class of post-transcriptionalregulators of gene expression during growth and development of organisms. A soybean disease-resistance varietySuinong 10 was inoculated with Phytophthora sojae race No. 1, and the specific miRNA resistant expression profile wasacquired by microarray for the first time. Different expressional miRNAs have been found after comparing the results ofthe treated sample with the control sample. Furthermore, the target genes of different expressional miRNAs were predicted.Two miRNAs, cbr-mir-241 and ath-miR854a, regulated the disease-resistance process directly through their targets, someenzymes. Another two miRNAs, gma-miR169a and ath-miR169h, participated in disease-resistance regulation as transcriptionfactors. Similarly, one miRNA, ptc-miR164f, has been reported to regulate the plant development. All of these studieswould be served as the foundation for exploring the resistance mechanism.
参考文献 | 相关文章 | 多维度评价