期刊
出版年
关键词
结果中检索
(((TANG Qi-yuan[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
Yield potential and stability in super hybrid rice and its production strategies
HUANG Min, TANG Qi-yuan, AO He-jun, ZOU Ying-bin
Journal of Integrative Agriculture 2017, 16 (
05
): 1009-1017. DOI:
10.1016/S2095-3119(16)61535-6
摘要
(
917
)
PDF
可视化
收藏
China’s Super Hybrid Rice Breeding Program has made significant progress over the past two decades. In this paper, we reviewed our studies on the yield potential and stability in super hybrid rice and discussed the strategies for super hybrid rice production. The results of our studies show that rice yield potential has been increased by 12% in super hybrid cultivars as compared with ordinary hybrid and inbred cultivars. The higher grain yields in super hybrid rice cultivars are attributed to larger panicle size coupled with higher biomass production or higher harvest index. However, grain yields in super hybrid rice cultivars vary widely among locations depending on soil and climatic factors. Therefore, it is important to tailor target yield to local conditions in super hybrid rice production. The target yield for super hybrid rice production can be determined by the average yield method or the regression model method. Improving soil quality is critical to achieving the target yield in super hybrid rice production. Favorable crop rotations such as rice-oilseed rape and novel soil management practices, such as biochar addition, are effective approaches to improve soil quality. It is needed to develop simplified cultivation technologies for super hybrid rice to meet the changes in socioeconomic environments during the period of transition. There are such technologies as no-tillage direct seeding and mechanized transplanting at high hill density with single seedling per hill.
参考文献
|
相关文章
|
多维度评价
Select
2.
Comparisons of Yield and Growth Behaviors of Hybrid Rice Under Different Nitrogen Management Methods in Tropical and Subtropical Environments
Ibrahim Md, PENG Shao-bing, TANG Qi-yuan, HUANG Min, JIANG Peng , ZOU Ying-bin
Journal of Integrative Agriculture 2013, 12 (
4
): 621-629. DOI:
10.1016/S2095-3119(13)60280-4
摘要
(
1555
)
PDF
可视化
收藏
To compare the grain yield and growth behaviors of hybrid rice, field experiments were conducted in a subtropical environment in Changsha, Hunan Province, China, and in two tropical environments in Gazipur and Habiganj in Bangladesh during 2009 to 2011. Three hybrid rice cultivars were grown under three nitrogen (N) management treatments in each experiment. The results showed that grain yield was significantly affected by locations, N treatments and their interaction but not by cultivars. Changsha produced 8-58% higher grain yields than Bangladesh locations. Sink size (spikelet number per unit land area) was responsible for these yield differences. Larger panicle size (spikelet number per panicle) contributed to greater sink size in Changsha. Aboveground total biomass was greater in Changsha than in Bangladesh locations, whereas harvest index was higher in Bangladesh locations than in Changsha. Crop growth rate (CGR) was greater at Changsha than Bangladesh locations during vegetative phase, while the difference was relatively small and not consistent during the later growth phases. Higher leaf area index and leaf area duration were partly responsible for the greater CGR in Changsha. Real-time N management (RTNM) produced lower grain yields than fixed-time N management in more than half of the experiments. Our study suggested that further improvement in rice yield in the tropical environments similar to those of Bangladesh will depend mainly on the ability to increase panicle size as well as CGR during vegetative phase, and the chlorophyll meter threshold value used in RTNM needs to be modified according to environmental conditions and cultivar characteristics to achieve a desirable grain yield.
参考文献
|
相关文章
|
多维度评价
Select
3.
Effect of Nitrogen Regimes on Grain Yield, Nitrogen Utilization, Radiation Use Efficiency, and Sheath Blight Disease Intensity in Super Hybrid Rice
LI Di-qin, TANG Qi-yuan, ZHANG Yun-bo, QIN Jian-quan, LI Hu, CHEN Li-jun, YANG Sheng-hai, ZOU Ying-bin , PENG Shao-bing
Journal of Integrative Agriculture 2012, 12 (
1
): 134-143. DOI:
10.1016/S1671-2927(00)8520
摘要
(
1658
)
PDF
可视化
收藏
Poor nitrogen use efficiency in rice production is a critical issue in China. Site-specific N managements (SSNM) such as real-time N management (RTNM) and fixed-time adjustable-dose N management (FTNM) improve fertilizer-N use efficiency of irrigated rice. This study was aimed to compare the different nitrogen (N) rates and application methods (FFP, SSNM, and RTNM methods) under with- and without-fungicide application conditions on grain yield, yield components, solar radiation use efficiency (RUE), agronomic-nitrogen use efficiency (AEN), and sheath blight disease intensity. Field experiments were carried out at Liuyang County, Hunan Province, China, during 2006 and 2007. A super hybrid rice Liangyou 293 (LY293) was used as experimental material. The results showed that RTNM and SSNM have great potential for improving agronomic-nitrogen use efficiency without sacrificing the grain yield. There were significant differences in light interception rate, sheath blight disease incidence (DI) and the disease index (ShBI), and total dry matter among the different nitrogen management methods. The radiation use efficiency was increased in a certain level of applied N. But, the harvest index (HI) decreased with the increase in applied N. There is a quadratic curve relationship between grain yield and applied N rates. With the same N fertilizer rate, different fertilizer-N application methods affected the RUE and grain yield. The fungicide application not only improved the canopy light interception rate, RUE, grain filling, and harvest index, but also reduced the degree of sheath blight disease. The treatment of RTNM under the SPAD threshold value 40 obtained the highest yield. While the treatment of SSNM led to the highest nitrogen agronomic efficiency and higher rice yield, and decreased the infestation of sheath blight disease dramatically as well. Nitrogen application regimes and diseases control in rice caused obvious effects on light interception rate, RUE, and HI. Optimal N rate is helpful to get higher light interception rate, RUE, and HI. Disease control with fungicide application decreased and delayed the negative effects of the high N on rice yield formation. SSNM and RTNM under the proper SPAD threshold value obtained highyield with high efficiency and could alleviate environmental pollution in rice production.
参考文献
|
相关文章
|
多维度评价