期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2 and EnMAP data
CUI Bei, ZHAO Qian-jun, HUANG Wen-jiang, SONG Xiao-yu, YE Hui-chun, ZHOU Xian-feng
Journal of Integrative Agriculture    2019, 18 (6): 1230-1245.   DOI: 10.1016/S2095-3119(18)62093-3
摘要323)      PDF    收藏
Leaf chlorophyll content (LCC) is an important physiological indicator of the actual health status of individual plants. An accurate estimation of LCC can therefore provide valuable information for precision field management. Red-edge information from hyperspectral data has been widely used to estimate crop LCC. However, after the advent of red-edge bands in satellite imagery, no systematic evaluation of the performance of satellite data has been conducted. Toward this end, we analyze herein the performance of winter wheat LCC retrieval of currant and forthcoming satellites (RapidEye, Sentinel-2 and EnMAP) and their new red-edge bands by using partial least squares regression (PLSR) and a vegetation-indexbased approach. These satellite spectral data were obtained by resampling ground-measured hyperspectral data under various field conditions and according to specific spectral response functions and spectral resolution. The results showed: 1) This study confirmed that RapidEye, Sentinel-2 and EnMAP data are suitable for winter wheat LCC retrieval. For the PLSR approach, Sentinel-2 data provided more accurate estimates of LCC (R2=0.755, 0.844, 0.805 for 2002, 2010, and 2002+2010) than do RapidEye data (R2=0.689, 0.710, 0.707 for 2002, 2010, and 2002+2010) and EnMAP data (R2=0.735, 0.867, 0.771 for 2002, 2010, and 2002+2010). For index-based approaches, the MERIS terrestrial chlorophyll index, which is a vegetation index with two red-edge bands, was the most sensitive and robust index for LCC for both the Sentinel-2 and EnMAP data (R2≥0.628), and the indices (NDRE1, SRRE1 and CIRE1) with a single red-edge band were the most sensitive and robust indices for the RapidEye data (R2≥0.420); 2) According to the analysis of the effect of the wavelength and number of used red-edge spectral bands on LCC retrieval, the short-wavelength red-edge bands (from 699 to 734 nm) provided more accurate predictions when using the PLSR approach, whereas the long-wavelength red-edge bands (740 to 783 nm) gave more accurate predictions when using the vegetation indice (VI) approach. In addition, the prediction accuracy of RapidEye, Sentinel-2 and EnMAP data was improved gradually because of more number of red-edge bands and higher spectral resolution; VI regression models that contain a single or multiple red-edge bands provided more accurate predictions of LCC than those without red-edge bands, but for normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like index, two red-edge bands index didn’t significantly improve the predictive accuracy of LCC than those indices with a single red-edge band. Although satellite data with higher spectral resolution and a greater number of red-edge bands marginally improve the accuracy of estimates of crop LCC, the level of this improvement remains insufficient because of higher spectral resolution, which results in a worse signal-to-noise ratio. The results of this study are helpful to accurately monitor LCC of winter wheat in large-area and provide some valuable advice for design of red-edge spectral bands of satellite sensor in future.
相关文章 | 多维度评价
2. Estimating Wheat Grain Protein Content Using Multi-Temporal Remote Sensing Data Based on Partial Least Squares Regression
LI Cun-jun, WANG Ji-hua, WANG Qian, WANG Da-cheng, SONG Xiao-yu, WANG Yan, HUANG Wen-jiang
Journal of Integrative Agriculture    2012, 12 (9): 1445-1452.   DOI: 10.1016/S1671-2927(00)8676
摘要1304)      PDF    收藏
Estimating wheat grain protein content by remote sensing is important for assessing wheat quality at maturity and making grains harvest and purchase policies. However, spatial variability of soil condition, temperature, and precipitation will affect grain protein contents and these factors usually cannot be monitored accurately by remote sensing data from single image. In this research, the relationships between wheat protein content at maturity and wheat agronomic parameters at different growing stages were analyzed and multi-temporal images of Landsat TM were used to estimate grain protein content by partial least squares regression. Experiment data were acquired in the suburb of Beijing during a 2-yr experiment in the period from 2003 to 2004. Determination coefficient, average deviation of self-modeling, and deviation of crossvalidation were employed to assess the estimation accuracy of wheat grain protein content. Their values were 0.88, 1.30%, 3.81% and 0.72, 5.22%, 12.36% for 2003 and 2004, respectively. The research laid an agronomic foundation for GPC (grain protein content) estimation by multi-temporal remote sensing. The results showed that it is feasible to estimate GPC of wheat from multi-temporal remote sensing data in large area.
参考文献 | 相关文章 | 多维度评价
3. Assessment of L and Suitability Potentials for Selecting Winter Wheat Cultivation Areas in Beijing, China, Using RS and GIS
WANG Da-cheng, LI Cun-jun, SONG Xiao-yu, WANG Ji-hua, YANG Xiao-dong, HUANG Wen-jiang
Journal of Integrative Agriculture    2011, 10 (9): 1419-1430.   DOI: 10.1016/S1671-2927(11)60135-1
摘要1884)      PDF    收藏
It is very important to provide reference basis for winter wheat quality regionalization of cultivation area. The aim of this article was based on factors affecting wheat quality and setting realistic spatial models in each part of the land for assessment of land suitability potentials in Beijing, China. The study employed artificial neural network (ANN) analysis to select factors and evaluate the relative importance of selected environment factors on wheat grain quality. The spatial models were developed and demonstrated their use in selecting the most suitable areas for the winter wheat cultivation. The strategy overcomes the non-accurate traditional statistical methods. Satellite images, toposheet, and ancillary data of the study area were used to find tillable land. These categories were formed by integrating the various layers with corresponding weights in geographical information system (GIS). An integrated land suitability potential (LSP) index was computed considering the contribution of various parameters of land suitability. The study demonstrated that the tillable land could be categorized into spatially distributed agriculture potential zones based on soil nutrient and assembled weather factors using RS and GIS as not suitable, marginally suitable, moderately suitable, suitable, and highly suitable by adopting the logical criteria. The sort of land distribution map made by the factors with their weights showed more truthfulness.
参考文献 | 相关文章 | 多维度评价