期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Characteristics and roles of cytochrome b5 in cytochrome P450-mediated oxidative reactions in Locusta migratoria
LIU Jiao, ZHANG Xue-yao, WU Hai-hua, MA Wen, ZHU Wen-ya, Kun-Yan ZHU, MA En-bo, ZHANG Jian-zhen
Journal of Integrative Agriculture    2020, 19 (6): 1512-1521.   DOI: 10.1016/S2095-3119(19)62827-3
摘要115)      PDF    收藏
Cytochrome b5 (Cyt-b5) is a small heme protein and known to be involved in a wide range of biochemical transformations, including cytochrome P450 monooxygenase (CYP)-mediated metabolism of endogenous and exogenous compounds.  Studies on Cyt-b5 are more concentrated in mammals, but are relatively rare in insects.  The characteristics and function of Cyt-b5 from Locusta migratoria have not been described yet.  We sequenced the full-length cDNA sequence of Cyt-b5 from L. migratoria (LmCyt-b5) by reverse transcription-PCR (RT-PCR) based on locust transcriptome database.  The phylogenetic analysis showed that LmCyt-b5 was closely related to the Cyt-b5 from Blattodea.  LmCyt-b5 was highly expressed in ovary, Malpighian tubules, midgut, gastric caeca, and fat bodies.  Silencing of LmCyt-b5 had no effect on the susceptibility of L. migratoria to four different insecticides.  Suppression of LmCyt-b5 or silencing of both LmCyt-b5 and LmCPR did not significantly change the total CYP activity toward the substrate 7-ethoxycoumarin (7-EC).  However, coexpression of LmCYP6FD1 with LmCPR and LmCyt-b5 together in Sf9 cells by using Bac-to-Bac baculovirus expression system significantly increased the catalytic activity of LmCYP6FD1 toward 7-EC as compared with the coexpression of LmCYP6FD1 with cytochrome P450 reductase (LmCPR) or LmCyt-b5 separately.  These results suggest that LmCyt-b5 plays an important role in the catalytic reaction of LmCYP6FD1 toward 7-EC in our in vitro experiments.  Further study is needed to clarify the role of LmCyt-b5 in CYP-mediated catalytic reactions in L. migratoria.
 
参考文献 | 相关文章 | 多维度评价
2. A Photosensitivity Insecticide, 5-Aminolevulinic Acid, Exerts EffectiveToxicity to Oxya chinensis (Orthoptera: Acridoidea)
YANG Mei-ling; YIN Kun; GUO Ya-ping; MA En-bo and ZHANG Jian-zhen
Journal of Integrative Agriculture    2011, 10 (7): 1056-1063.   DOI: 10.1016/S1671-2927(11)60094-1
摘要1872)      PDF    收藏
5-Aminolevulinic acid (ALA), a major photosensitivity insecticide, has attracted increasing attention as a new type of highly efficient, environmental friendly pesticide to be used to control the pest. To examine whether or not ALA acts effectively to grasshopper, Oxya chinensis and elucidate the detoxification mechanism of ALA, the susceptibility to ALA was assessed in O. chinensis and two major metabolic detoxification enzymes including glutathione S-transferases (GSTs) and general esterases (ESTs)-specific activities were compared in different development stages and different body sections
of O. chinensis treated by ALA and the control. The results showed that the ALA exhibited obvious toxicity to the grasshopper in different development stages. In the low-dose treatment (0.0597 mmol L-1), the mortalities of O. chinensis reached a significant level (55.5% in the 1st instar nymphs, 61.4% in the 2nd instar nymphs, 71.4% in the 3rd instar nymphs, and 64.4% in the 4th instar nymphs. But, there was no dose-dependent toxic effect. Thereby, we proposed that ALA has the potential for acting as photosensitivity insecticide for controlling O. chinensis. GSTs activity assays using CDNB and DCNB as substrates indicated that the thorax and abdomen of the different instar nymphs treated by ALA showed 1.52-5.56 fold significantly increased GSTs activities compared with the control. However, for the ESTs-specific activity assay, there was no significant difference between O. chinensis treated by ALA and the control within different instar nymphs, when α-NA, α-NB and β-NA were used as substrates. Therefore, GSTs-mediated metabolic detoxification
as evidenced by significantly increased GSTs activities might contribute to protect against oxidative damage and oxidative
stress by ALA in O. chinensis.
参考文献 | 相关文章 | 多维度评价
3. Expression and Characterization of a Sigma-Class Glutathione S-transferase of the Oriental Migratory Locust, Locusta migratoria manilensis (Meyen) 
JIA Miao, QIN Guo-hua, LIU Ting, ZHANG Jian-zhen, ZHANG Xue-yao, ZHU Kun-yan, GUO Yaping, MA En-bo
Journal of Integrative Agriculture    2011, 10 (10): 1570-1576.   DOI: 10.1016/S1671-2927(11)60153-3
摘要1822)      PDF    收藏
A cDNA encoding a sigma-class glutathione S-transferase of the locust, Locusta migratoria manilensis (LmGSTs1), was cloned by reverse transcriptase-polymerase chain reaction. The 830 bp-long cDNA encoded a 615 bp open reading frame (204 amino acid polypeptide), which exhibited the structural motif and domain organization characteristic of GST sigmaclass. It revealed 59, 57, 57, and 56% identities to sigma-class GSTs from Blattella germanica, Gryllotalpa orientalis, Nasonia vitripennis, and Pediculus humanus corporis, respectively. A recombinant protein (LmGSTs1) was functionally expressed in Escherichia coli cells in a soluble form and purified to homogeneity. LmGSTs1 was able to catalyze the biotranslation of glutathione with 1-chloro-2,4-dinitrobenzene, a model substrate for GSTs, as well as with p-nitro-benzyl chloride. Its optimal activity was observed at pH 8.0 and at 30°C. Incubation for 30 min at temperatures below 50°C scarcely affected the activity. The I50 of reactive blue (RB) was 18.5 μmol L-1. In the presence of 0.05 mmol L-1 ethacrynic acid (ECA), LmGSTs1 showed (81±3)% of the original activities.
参考文献 | 相关文章 | 多维度评价