期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Timing of N Application Affects Net Primary Production of Soybean with Different Planting Densities
ZHANG Ming-cong, SUN Wen-xiang, LIU Yuan-ying, LUO Sheng-guo, ZHAO Jing, WU Qiong, WU Zhen-yu , JIANG Yi
Journal of Integrative Agriculture    2014, 13 (12): 2778-2787.   DOI: 10.1016/S2095-3119(13)60535-3
摘要1085)      PDF    收藏
Understanding the relationship between the timing of N fertilizer applications and crop primary production is crucial for achieving high yield and N use efficiency in agriculture. This study investigated the effects of starting-N plus topdressing N applications (as compared to the common practice of all basal application) on soybean photosynthetic capacity under different planting densities. A field experiment was conducted in two growing seasons (2011 and 2012), and the soybean (Glycine max L. Merrill) cultivar was Dongnong 52, three planting densities (20, 25 and 30 plants m-2), and four N fertilizer application patterns (all N fertilizer of 6 g N m-2 as basal fertilizer, all N fertilizer as topdressing at beginning pod stage (R3), 1.8 g N m-2 as basal fertilizer and 4.2 g N m-2 as topdressing at stage R3 and full pod stage (R4), respectively). The results indicated that under the same planting density, compared to applying all N as basal fertilizer, the application of starter-N plus topdressing N substantially reduced the rate of pod abscission, and enhanced leaf area index (LAI) significantly at beginning seed stage (R5) (P<0.05), net assimilation rate (NAR) during stages R4-full seed stage (R6) (P<0.05), contribution rate of post-seed filling assimilate to seed (CPA) (P<0.05), and yield (P<0.05). Applying topdressing N at stage R4 resulted in higher net primary production and yield than applying topdressing N at stage R3. When applying starter-N plus topdressing N at planting density of 25 plants m-2, LAI after stage R5 and NAR after stage R4 were increased by 5.92-16.3% (P<0.05) and 13.7-26.6% (P<0.05) with the planting density of 20 plants m-2, respectively, and yield was 8.46-14.0% (P<0.05) higher than that under 20 plants m-2. When planting density increased to 30 plants m-2, only LAI during stages R4-R5 and NAR during stages R4-R5 increased by applying starter-N plus topdressing N, while the other indexes declined. Overall, results of this study demonstrated that applying starter-N plus topdressing N could significantly enhance soybean photosynthetic capacity after stage R5 at planting density of 25 plants m-2.
参考文献 | 相关文章 | 多维度评价
2. Effects of Nitrogen Management on the Yield of WinterWheat in Cold Area of Northeastern China
LI Lian-peng, LUO Sheng-guo, PENG Xian-long
Journal of Integrative Agriculture    2012, 12 (6): 1020-1025.   DOI: 10.1016/S1671-2927(00)8626
摘要1486)      PDF    收藏
A plot experiment including four treatments, CK (N 105 kg ha-1 as urea, including a basal N application of 35 kg ha-1 and a topdressing N 70 kg ha-1 at turned green stage) and optimized N management (OPT1, OPT2 and OPT3, applied two-thirds, one-third and two-fifths N at jointing stage, respectively, total N 60 kg ha-1), was conducted to evaluate the effects of nitrogen management on growth and N uptake of winter wheat (Triticum aestivum), Dongnong 1, which is the first highly cold tolerant winter wheat in China. Index of population quality, N uptake and yield were determined. The ear-bearing tiller rate was increased by above 12%, and the leaf area index, biomass and N uptake were significantly decreased (P<0.05) at jointing stage. OPT treatments increased the grain to leaf area ratio at heading stage, the dry matter weight and N uptake after heading by 14.3-27.9%, 11.6-28.7% and 118.1-161.8 %, respectively. The yield of the OPT treatments was increased by 14.2-37.5% compared with CK, and there was a significant difference (P<0.05) between CK and OPT1 treatments. Harvest index and N partial factor productivity (PFP, kg grain yield per kg N applied) was clearly enhanced from 0.4 and 35.6 kg, respectively for CK to an average of 0.48 (P<0.05) and 77.6 kg (P<0.05) in the OPT treatments. These results indicated that the optimized N management increased the harvest index, yield and N use efficiency by decreasing the N application rate and postponing N application time, improved wheat population quality, controlled excessive growth in the vegetative stages and increased dry matter and N accumulation rates after heading.
参考文献 | 相关文章 | 多维度评价