期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Effect of sucrose on cryopreservation of pig spermatogonial stem cells
PAN Chuan-ying, YU Shuai, ZHANG Peng-fei, WANG Bo, ZHU Zhen-dong, LIU Ying-ying, ZENG Wen-xian
Journal of Integrative Agriculture    2017, 16 (05): 1120-1129.   DOI: 10.1016/S2095-3119(16)61489-2
摘要890)      PDF    收藏
Sucrose is known to play an important role in the cryopreservation of sperm and female gonads; however, its effect on the cryopreservation of pig spermatogonial stem cells (pSSCs) has not been tested.  The aim of this work was to study the effect of sucrose during pSSC cryopreservation and to find the most effective concentration in freezing medium.  pSSCs were cryopreserved with freezing media containing different concentrations of sucrose (70, 140, 210, and 280 mmol L–1) and a control group without sucrose.  The survival rates, plasma membrane integrity, and mitochondrial membrane potential of thawed cells were detected by trypan blue (TB) staining, SYBR-14/propidium iodide (PI) dual staining, and JC-1 staining, respectively.  All the staining results showed an obvious increase in cell survival in the sucrose-treated groups as compared to that in the control group, with the exception of 280 mmol L–1 sucrose.  Moreover, the 210 mmol L–1 sucrose group yielded the highest survival rate among all the groups (P<0.05).  The results of SYBR-14/PI dual staining and JC-1 staining were consistent with those of TB staining as above described.  Quantitative real-time PCR (qRT-PCR) indicated that the mRNA levels of three apoptosis-promoting genes (BAX, APAF1 and CASPASE9) were significantly higher in thawed cells than in cells before freezing (P<0.05).  Moreover, the mRNA level of one anti-apoptotic gene (XIAP) was significantly lower in thawed cells than in cells before freezing (P<0.05).  When comparing the mRNA expression of apoptosis-related genes in thawed cells, the mRNA level of the anti-apoptotic genes in the control group was significantly lower than that in the sucrose-treated
groups (P<0.05).  Western blot analyses showed that the expression levels of cleaved CASPASE9, CASPASE3 and PARP-1 in the sucrose-treated groups were lower than those in the control group and were the lowest in the 210 mmol L–1 sucrose group.  Both qRT-PCR and Western blot analyses suggested that sucrose inhibited cell apoptosis during freezing and thawing.  Briefly, sucrose promoted pSSCs survival after freezing and thawing, especially at a concentration of 210 mmol L–1, which possibly assisted pSSC dehydration and inhibited cell apoptosis.  These findings hold great promise for further studies of the regulatory mechanism of proliferation and differentiation of pSSCs. 
参考文献 | 相关文章 | 多维度评价
2. Effects of selenium and sulfur on antioxidants and physiological parameters of garlic plants during senescence
CHENG Bo, LIAN Hai-feng, LIU Ying-ying, YU Xin-hui, SUN Ya-li, SUN Xiu-dong, SHI Qing-hua, LIU Shi-qi
Journal of Integrative Agriculture    2016, 15 (3): 566-572.   DOI: 10.1016/S2095-3119(15)61201-1
摘要2008)      PDF    收藏
A hydroponic study was conducted to determine the effects of selenium (Se: 0, 3, 6 μmol L−1) on senescence-related oxidative stress in garlic plants grown under two sulfur (S) levels. We evaluated the yields of plants harvested at 160 and 200 days after sowing. Plants grown under a low Se dose (0.3 μmol L−1) at low S level showed higher yields (12.0% increase in fresh weight yield, 13.7% increase in dry weight yield) than the controls, despite a decrease in chlorophyll concentration. Compared with control plants, the Se-treated plants showed lower levels of lipid peroxidation. The Se-treated plants also showed higher activities of glutathione peroxidase and catalase, but lower superoxide dismutase activities. Changes in Fv/Fm values and proline contents were affected more strongly by S than by Se. On the basis of our results, we can conclude that Se plays a key role in the antioxidant systems in garlic seedlings. It delays senescence by alleviating the peroxide stress, but it can be toxic at high levels. A high S level may increase tolerance to high Se concentrations through reducing Se accumulation in plants.
参考文献 | 相关文章 | 多维度评价