期刊
出版年
关键词
结果中检索
(((LI Zi-cong[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
Inhibition of KU70 and KU80 by CRISPR interference, not NgAgo interference, increases the efficiency of homologous recombination in pig fetal fibroblasts
LI Guo-ling, QUAN Rong, WANG Hao-qiang, RUAN Xiao-fang, MO Jian-xin, ZHONG Cui-li, YANG Huaqiang, LI Zi-cong, GU Ting, LIU De-wu, WU Zhen-fang, CAI Geng-yuan, ZHANG Xian-wei
Journal of Integrative Agriculture 2019, 18 (
2
): 438-448. DOI:
10.1016/S2095-3119(18)62150-1
摘要
(
276
)
PDF(pc)
(765KB)(
580
)
可视化
收藏
Non-homologous end-joining (NHEJ) is a predominant pathway for the repair of DNA double-strand breaks (DSB). It inhibits the efficiency of homologous recombination (HR) by competing for DSB targets. To improve the efficiency of HR, multiple CRISPR interference (CRISPRi) and
Natronobacterium gregoryi
Argonaute (NgAgo) interference (NgAgoi) systems have been designed for the knockdown of NHEJ key molecules,
KU70
,
KU80
, polynucleotide kinase/phosphatase (PNKP), DNA ligase IV (
LIG4
), and
NHEJ1
. Suppression of
KU70
and
KU80
by CRISPRi dramatically promoted (
P
<0.05) the efficiency of HR to 1.85- and 1.58-fold, respectively, whereas knockdown of PNKP, LIG4, and NHEJ1 repair factors did not significantly increase (
P
>0.05) HR efficiency. Interestingly, although the NgAgoi system significantly suppressed (
P
<0.05)
KU70
,
KU80
,
PNKP
,
LIG4
, and
NHEJ1
expression, it did not improve (P>0.05) HR efficiency in primary fetal fibroblasts. Our result showed that both NgAgo and catalytically inactive Cas9 (dCas9) could interfere with the expression of target genes, but the downstream factors appear to be more active following CRISPR-mediated interference than that of NgAgo.
参考文献
|
相关文章
|
多维度评价
Select
2.
RNA-Seq transcriptome analysis of porcine cloned and in vitro fertilized blastocysts
XU Wei-hua, LI Zi-cong, OUYANG Zhi-ping, YU Bo, SHI Jun-song, LIU De-wu, WU Zhen-fang
Journal of Integrative Agriculture 2015, 14 (
5
): 926-938. DOI:
10.1016/S2095-3119(14)60866-2
摘要
(
2405
)
PDF
可视化
收藏
Somatic nuclear transfer technology has become increasingly promising in biomedicine and agriculture. Whereas the approach remains inefficient and underlying mechanisms remain ambiguous. Although cloned embryos have similar in vitro developmental capacity as in vitro fertilized (IVF) embryos before implantation, they appeared to have much lower full-term developmental efficiency in pig and cattle, and thus it would be reasonable to postulate that profound distinction at the molecular level should exist between them. Herein, RNA sequencing technique was used to screen differentially expressed genes in cloned and IVF blastocysts, and in total 628 differentially expressed transcripts were obtained, among which, 280 transcripts are up-regulated and 348 transcripts are down-regulated in cloned blastocysts. Moreover, one statistically significant pathway associated with endoplasmic reticulum (ER) protein processing was enriched, and some ER-stress markers such as ATF4, ATF6, PDIA3, HSPA1B, HSP40 and HSP90 between cloned and IVF blastocysts were suggested. Additionally, some developmentally important genes such as lipid metabolism related genes (MGLL, DDHD2 and FADS2) and epigenetic modification genes (DNMT1, KDM5C and MBD3L5) were found differentially expressed between cloned and IVF embryos.
参考文献
|
相关文章
|
多维度评价
Select
3.
Characterization of dual enzyme resulted from bicistronic expression of two β-glucanases in porcine cells
ZHANG Xian-wei, LI Zi-cong, MENG Fan-ming, WANG De-hua, LIU De-wu, HE Xiao-yan, SUN Yue, BAI Yin-shan, WU Zhen-fang
Journal of Integrative Agriculture 2015, 14 (
4
): 732-740. DOI:
10.1016/S2095-3119(14)60788-7
摘要
(
2242
)
PDF
可视化
收藏
Many animal feed grains contain high β-glucan in the cell wall. Pigs do not secret β-glucanase to degrade the β-glucan in their feed. The indigestible β-glucan not only blocks the release of nutrients from the grain cell wall, but also increases the digesta viscosity in the gastrointestinal tract of pigs. Therefore, dietary β-glucan significantly inhibits nutrient digestion and absorption in pigs. Transgenic expression of β-glucanase in the digestive tract of pigs may offer a solution to solve this problem. In the current study, four arti?cial codon-optimized β-glucanases genes was prepared and expressed in porcine cells. Only pBgA and pEgx showed high activity in transfected pig kidney cells. To improve the pH range and pH stability of β-glucanase, the two β-glucanases, pBgA and pEgx, were co-expressed in pig kidney cells and salivary gland cells by Linker A3 or 2A peptide. The resulting dual enzymes of pBgA3pEg and pBg2ApEg showed significantly enlarged pH range and significantly increased pH stability, as compared to parental enzymes. These results provide useful data for future study on increasing the feed digestibility of pigs by transgenic expression of β-glucanase in their salivary glands.
参考文献
|
相关文章
|
多维度评价