期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Effects of plastic film mulching on soil greenhouse gases (CO2, CH4 and N2O) concentration within soil profiles in maize fields on the Loess Plateau, China
NAN Wei-ge, YUE Shan-chao, HUANG Hai-zhou, LI Shi-qing, SHEN Yu-fang
Journal of Integrative Agriculture    2016, 15 (2): 451-464.   DOI: 10.1016/S2095-3119(15)61106-6
摘要1987)      PDF    收藏
To better understand the effects of plastic film mulching on soil greenhouse gases (GHGs) emissions, we compared seasonal and vertical variations of GHG concentrations at seven soil depths in maize (Zea mays L.) fields at Changwu station in Shaanxi, a semi-humid region, between 2012 and 2013. Gas samples were taken simultaneously every one week from non-mulched (BP) and plastic film-mulched (FM) field plots. The results showed that the concentration of GHGs varied distinctly at the soil-atmosphere interface and in the soil profile during the maize growing season (MS). Both carbon dioxide (CO2) and nitrous oxide (N2O) concentrations increased with increasement of soil depth, while the methane (CH4) concentrations decreased with increasement of soil depth. A strong seasonal variation pattern was found for CO2 and N2O concentrations, as compared to an inconspicuous seasonal variation of CH4 concentrations. The mean CO2 and N2O concentrations were higher, but the mean CH4 concentration in the soil profiles was lower in the FM plots than in the BP plots. The results of this study suggested that plastic film mulching significantly increased the potential emissions of CO2 and N2O from the soil, and promoted CH4 absorption by the soil, particularly during the MS.
参考文献 | 相关文章 | 多维度评价
2. Soil mulching can mitigate soil water deficiency impacts on rainfed maize production in semiarid environments
ZHU Lin, LIU Jian-liang, LUO Sha-sha, BU Ling-duo, CHEN Xin-ping; LI Shi-qing
Journal of Integrative Agriculture    2015, 14 (1): 58-66.   DOI: 10.1016/S2095-3119(14)60845-5
摘要1775)      PDF    收藏
Temporally irregular rainfall distribution and inefficient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic film mulching are effective methods for improving agricultural productivity and water utilization. However, the effects of these mulching practices on soil water supply and plant water use associated with crop yield are not well understood. A 3-yr study was conducted to analyze the occurrence and distribution of dry spells in a semiarid region of Northwest China and to evaluate the effects of non-mulching (CK), gravel mulching (GM) and plastic film mulching (FM) on the soil water supply, plant water use and maize (Zea mays L.) grain yield. Rainfall analysis showed that dry spells of ≥5 days occurred frequently in each of 3 yr, accounting for 59.9–69.2% of the maize growing periods. The >15-d dry spells during the jointing stage would expose maize plants to particularly severe water stress. Compared with the CK treatment, both the GM and FM treatments markedly increased soil water storage during the early growing season. In general, the total evapotranspiration (ET) was not significantly different among the three treatments, but the mulched treatments significantly increased the ratio of pre- to post-silking ET, which was closely associated with yield improvement. As a result, the grain yield significantly increased by 17.1, 70.3 and 16.7% for the GM treatment and by 28.3, 87.6 and 38.2% for the FM treatment in 2010, 2011 and 2012, respectively, compared with the CK treatment. It’s concluded that both GM and FM are effective strategies for mitigating the impacts of water deficit and improving maize production in semiarid areas. However, FM is more effective than GM.
参考文献 | 相关文章 | 多维度评价
3. Effects of Phosphorus Application in Different Soil Layers on Root Growth, Yield, and Water-Use Efficiency of Winter Wheat Grown Under Semi-Arid Conditions
KANG Li-yun, YUE Shan-chao , LI Shi-qing
Journal of Integrative Agriculture    2014, 13 (9): 2028-2039.   DOI: 10.1016/S2095-3119(14)60751-6
摘要1228)      PDF    收藏
Deep phosphorus application can be a usefull measure to improve crops’ performance in semi-arid regions, but more knowledge of both its general effects and effects on specific crops is required to optimize treatments. Thus, the aims of this study were to evaluate the effects of phosphorus (P) application at different soil layers on root growth, grain yield, and water-use efficiency (WUE) of winter wheat grown on the semi-arid Loess Plateau of China and to explore the relationship between root distribution and grain yield. The experiment consisted of four P treatments in a randomized complete block design with three replicates and two cultivars: one drought-sensitive (Xiaoyan 22, XY22) and one drought-tolerant (Changhan 58, CH58). The four P treatments were no P (control, CK), surface P (SP), deep P (DP), and deep-band P application (DBP). CH58 produced larger and deeper root systems, and had higher grain yields and WUE, under the deep P treatments (DP and DBP) than under SP, clearly showing that deep P placement had beneficial effects on the drought-tolerant cultivar. In contrast, the grain yield and root growth of XY22 did not differ between DP or DBP and SP treatments. Further, root dry weight (RW) and root length (RL) in deep soil layer (30-100 cm) were closely positively correlated with grain yield and WUE of CH58 (but not XY22), highlighting the connections between a well-developed subsoil root system and both high grain yield and WUE for the drought-tolerant cultivar. WUE correlated strongly with grain yield for both cultivars (r=0.94, P<0.001). In conclusion, deep application of P fertilizer is a practical and feasible means of increasing grain yield and WUE of rainfed winter wheat in semi-arid regions, by promoting deep root development of drought-tolerant cultivars.
参考文献 | 相关文章 | 多维度评价
4. Soil Organic Nitrogen and Its Contribution to Crop Production
LI Sheng-xiu, WANG Zhao-hui, MIAO Yan-fang , LI Shi-qing
Journal of Integrative Agriculture    2014, 13 (10): 2061-2080.   DOI: 10.1016/S2095-3119(14)60847-9
摘要1555)      PDF    收藏
Plant growth and crop production depend to a large extent on soil N supplying capacity (SNSC): The higher the SNSC, the higher the dependence of crops on soil and the lower the N fertilizer recovery. Of the SNSC, soil organic N (ON) played a key role in supplying N nutrient to crop production and still does in many subsistence and low-input farming systems. In this paper, soil ON contents, types, chemical components and its contribution to plant production are reviewed up to date in details, the characteristics of ON in dryland soils discussed together with its chemical components, and the mineralization and availability to plants of some important chemical components are emphasized at the last part for practical considerations.
参考文献 | 相关文章 | 多维度评价
5. Effects of the Spatial Coupling of Water and Fertilizer on the Chlorophyll Fluorescence Parameters of Winter Wheat Leaves 
SHEN Yu-fang , LI Shi-qing
Journal of Integrative Agriculture    2011, 10 (12): 1923-1931.   DOI: 10.1016/S1671-2927(11)60193-4
摘要1650)      PDF    收藏
Wheat is an important agricultural crop in the Loess region of China, where there is drought stress and low availability of soil nitrogen and phosphorus. Using a pulse modulation fluorometer, we studied the effects of water, nitrogen, and phosphorus on the kinetic parameters of chlorophyll fluorescence in winter wheat. The wheat was grown in layered columns of Eum-Orthic Anthrosol (Cinnamon soil), with the water content and nutrient composition of each layer controlled. The results showed that the kinetic parameters of chlorophyll fluorescence were sensitive to water stress. The basic fluorescence (F0) of leaves was higher in the dry treatment (0-30 cm layer at 40-45% of field capacity, 30-90 cm at 75-80% of field capacity) compared to the wet treatment (entire soil column at 75-80% of field capacity). The maximal fluorescence (Fm), the variable fluorescence (Fv), the photochemical efficiency (Fv/Fm) and potential activites (Fv/F0) of photosystem 2 (PS2) were significantly lower in the dry treatment. Although drought stress impaired PS2 function, this effect was significantly ameliorated by applying P or NP fertilizer, but not N alone. P application increased Fv/Fm, both in well-watered and water stressed plants, especially when fertilizer was applied throughout the column or within the top 30 cm of soil. A combined fertilizer improved photosynthesis in well watered plants, with Fm and Fv/Fm being the highest when fertilizer was applied throughout the columns. For drought stressed, plants Fv/Fm was significantly greater when combined fertilizer was added within the top 30 cm of soil. We concluded that, when growing winter wheat in both arid and semi-arid parts of the Loess region of China, it is important to guarantee the nutrient supply in the top 30 cm of the soil.
参考文献 | 相关文章 | 多维度评价