期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Differentially expressed miRNAs in anthers may contribute to the fertility of a novel Brassica napus genic male sterile line CN12A
Dong Yun, Wang Yi, Jin Feng-wei, Xing Li-juan, Fang Yan, Zhang Zheng-ying, ZOU Jun-jie, Wang Lei, Xu Miao-yun
Journal of Integrative Agriculture    2020, 19 (7): 1731-1742.   DOI: 10.1016/S2095-3119(19)62780-2
摘要95)      PDF    收藏
In Brassica napus L. (rapeseed), complete genic male sterility (GMS) plays an important role in the utilization of heterosis.  Although microRNAs (miRNAs) play essential regulatory roles during bud development, knowledge of how GMS is regulated by miRNAs in rapeseed is rather limited.  In this study, we obtained a novel recessive GMS system, CN12AB.  The sterile line CN12A has defects in tapetal differentiation and degradation.  Illumina sequencing was employed to examine the expression of miRNAs in the buds of CN12A and the fertile line CN12B.  We identified 85 known miRNAs and 120 novel miRNAs that were expressed during rapeseed anther development.  When comparing the expression levels of miRNAs between CN12A and CN12B, 19 and 18 known miRNAs were found to be differentially expressed in 0.5–1.0 mm buds and in 2.5–3.0 mm buds, respectively.  Among these, the expression levels of 14 miRNAs were higher and the levels of 23 miRNAs were lower in CN12A compared with CN12B.  The predicted target genes of these differentially expressed miRNAs encode protein kinases, F-box domain-containing proteins, MADS-box family proteins, SBP-box gene family members, HD-ZIP proteins, floral homeotic protein APETALA 2 (AP2), and nuclear factor Y, subunit A.  These targets have previously been reported to be involved in pollen development and male sterility, suggesting that miRNAs might act as regulators of GMS in rapeseed anthers.  Furthermore, RT-qPCR data suggest that one of the differentially expressed miRNAs, bna-miR159, plays a role in tapetal differentiation by regulating the expression of transcription factor BnMYB101 and participates in tapetal degradation and influences callose degradation by manipulating the expression of BnA6.  These findings contribute to our understanding of the roles of miRNAs during anther development and the occurrence of GMS in rapeseed.
 
参考文献 | 相关文章 | 多维度评价
2. Identification of a major QTL for flag leaf glaucousness using a high-density SNP marker genetic map in hexaploid wheat
LI Chun-lian, LI Ting-ting, LIU Tian-xiang, SUN Zhong-pei, BAI Gui-hua, JIN Feng, WANG Yong, WANG Zhong-hua
Journal of Integrative Agriculture    2017, 16 (02): 445-453.   DOI: 10.1016/S2095-3119(16)61339-4
摘要1030)      PDF    收藏
Cuticular wax plays an important role in protecting land plant against biotic and abiotic stresses.  Cuticular wax production on plant surface is often visualized by a characteristic glaucous appearance.  This study identified quantitative trait loci (QTLs) for wheat (Triticum aestivum L.) flag leaf glaucousness (FLG) using a high-density genetic linkage map developed from a recombinant inbred line (RIL) population derived from the cross Heyne×Lakin by single-seed descent.  The map consisted of 2 068 single nucleotide polymorphism (SNP) markers and 157 simple sequence repeat (SSR) markers on all 21 wheat chromosomes and covered a genetic distance of 2 381.19 cM, with an average marker interval of 1.07 cM. Two additive QTLs for FLG were identified on chromosomes 3AL and 2DS with the increasing FLG allele contributed from Lakin.  The major QTL on 3AL, QFlg.hwwgr-3AL, explained 17.5–37.8% of the phenotypic variation in different environments.  QFlg.hwwgr-3AL was located in a 4.4-cM interval on chromosome 3AL that was flanked by two markers IWA1831 and IWA8374.  Another QTL for FLG on 2DS, designated as QFlg.hwwgr-2DS which was identified only in Yangling in 2014 (YL14), was flanked by IWA1939 and Xgwm261 and accounted for 11.3% of the phenotypic variation for FLG.  QFlg.hwwgr-3AL and QFlg.hwwgr-2DS showed Additive×Environment (AE) interactions, explaining 3.5 and 4.4% of the phenotypic variance, respectively.  Our results indicated that different genes/QTLs may contribute different scores of FLG in a cultivar and that the environment may play a role in FLG.
参考文献 | 相关文章 | 多维度评价
3. Effect of Environment and Genetic Recombination on Subspecies and Economic Trait Differentiation in the F2 and F3 Generations from indicajaponica Hybridization
WANG He-tong, JIN Feng, JIANG Yi-jun, LIN Qing-shan, XU Hai, CHENG Ling, XIA Ying-jun, LIU Chun-xiang, CHEN Wen-fu , XU Zheng-jin
Journal of Integrative Agriculture    2014, 13 (1): 18-30.   DOI: 10.1016/S2095-3119(13)60353-6
摘要1754)      PDF    收藏
indica and japonica are the two most important subspecies of Asian cultivated rice. Identifying mechanisms responsible for population differentiation in these subspecies is important for indica-japonica hybridization breeding. In this study, subspecies and economic trait differentiation patterns were analyzed using morphological and molecular (InDel and Intron Length Polymorphism) data in F2 and F3 populations derived from indica-japonica hybridization. Populations were grown in Liaoning and Guangdong provinces, China, with F3 populations generated from F2 populations using bulk harvesting (BM) and single-seed descent methods (SSD). Segregation distortion was detected in F3-BM populations, but not in F3- SSD or in F2 populations. Superior performance was observed with respect to economic traits in Liaoning compared with that in Guangdong and 1 000-grain weight (KW), seed setting rate (SSR) and grain yield per plant (GYP) were significantly correlated with indica and japonica subspecies types. Analysis of molecular and morphological data demonstrated that the environment is the main factor giving rise to population differentiation in indica-japonica hybridization. In addition, we also found that KW, SSR and GYP are related to subspecies characteristics and kinship, which is possibly a significant factor resulting in economic trait differentiation and determining environmental adaptability. Our study has provided new insights into the process of population differentiation in these subspecies to inform indica-japonica hybridization breeding.
参考文献 | 相关文章 | 多维度评价