期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.)
DU Qi, ZHAO Xin-hua, XIA Le, JIANG Chun-ji, WANG Xiao-guang, HAN Yi, WANG Jing, YU Hai-qiu
Journal of Integrative Agriculture    2019, 18 (2): 395-406.   DOI: 10.1016/S2095-3119(18)61953-7
摘要342)      PDF(pc) (5041KB)(821)    收藏
Potassium (K) deficiency significantly decreases photosynthesis due to leaf chlorosis induced by accumulation of reactive oxygen species (ROS).  But, the physiological mechanism for adjusting antioxidative defense system to protect leaf function in maize (Zea mays L.) is unknown.  In the present study, four maize inbred lines (K-tolerant, 90-21-3 and 099; K-sensitive, D937 and 835) were used to analyze leaf photosynthesis, anatomical structure, chloroplast ultrastructure, ROS, and antioxidant activities.  The results showed that the chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), photochemical quenching (qP), and electron transport rate of PSII (ETR) in 90-21-3 and 099 were higher than those in D937 and 835 under K deficiency treatment.  Parameters of leaf anatomical structure in D937 that were significantly changed under K deficiency treatment include smaller thickness of leaf, lower epidermis cells, and vascular bundle area, whereas the vascular bundle area, xylem vessel number, and area in 90-21-3 were significantly larger or higher.  D937 also had seriously damaged chloroplasts and PSII reaction centers along with increased superoxide anion (O2-·) and hydrogen peroxide (H2O2).  Activities of antioxidants, like superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), were significantly stimulated in 90-21-3 resulting in lower levels of O2-· and H2O2.  These results indicated that the K-tolerant maize promoted antioxidant enzyme activities to maintain ROS homeostasis and suffered less oxidative damage on the photosynthetic apparatus, thereby maintaining regular photosynthesis under K deficiency stress.
参考文献 | 相关文章 | 多维度评价
2. Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.)
WANG Xiao-guang, ZHAO Xin-hua, JIANG Chun-ji, LI Chun-hong, CONG Shan, WU Di, CHEN Yan-qiu, YU Hai-qiu, WANG Chun-yan
Journal of Integrative Agriculture    2015, 14 (5): 856-863.   DOI: 10.1016/S2095-3119(14)60848-0
摘要2435)      PDF    收藏
Potassium is an important nutrient element requiring high concentration for photosynthetic metabolism. The potassium deficiency in soil could inhibit soybean (Glycine max (L.) Merr.) photosynthesis and result in yield reduction. Research on the photosynthetic variations of the different tolerant soyben varieties should provide important information for high yield tolerant soybean breeding program. Two representative soybean varieties Tiefeng 40 (tolerance to K+ deficiency) and GD8521 (sensitive to K+ deficiency) were hydroponically grown to measure the photosynthesis, chlorophyll fluorescence parameters and Rubisco activity under different potassium conditions. With the K-deficiency stress time extending, the net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (Gs) of GD8521 were significantly decreased under K-deficiency condition, whereas the intercellular CO2 concentration (Ci) was significantly increased. As a contrast, the variations of Tiefeng 40 were almost little under K-deficiency condition, which indicated tolerance to K+ deficiency variety could maintain higher efficient photosynthesis. On the 25th d after treatment, the minimal fluorescence (F0) of GD8521 was significantly increased and the maximal fluorescence (Fm), the maximum quantum efficiency of PSII photochemistry (Fv/ Fm), actual photochemical efficiency of PSII (ΦPSII), photochemical quenching (qP), and electron transport rate of PSII (ETR) were significantly decreased under K+ deficiency condition. In addition, the Rubisco content of GD8521 was significantly decreased in leaves. It is particularly noteworthy that the chlorophyll fluorescence parameters and Rubisco content of Tiefeng 40 were unaffected under K+ deficiency condition. On the other hand, the non-photochemical quenching (qN) of Tiefeng 40 was significantly increased. The dry matter weight of Tiefeng 40 was little affected under K+ deficiency condition. Results indicated that Tiefeng 40 could avoid or relieve the destruction of PSII caused by exceeded absorbed solar energy under K-deficiency condition and maintain natural photosynthesis and plant growth. It was an essential physiological mechanism for low-K-tolerant soybean under K-deficiency stress.
参考文献 | 相关文章 | 多维度评价