期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops
TENG Wan, HE Xue, TONG Yi-ping
Journal of Integrative Agriculture    2017, 16 (12): 2657-2673.   DOI: 10.1016/S2095-3119(17)61709-X
摘要1050)      PDF(pc) (364KB)(160)    收藏
The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility. The use efficiency of nitrogen, phosphorus, and potassium is controlled by complex gene networks that co-ordinate uptake, re-distribution, assimilation, and storage of these nutrients. Great progress has been made in breeding nutrient-efficient crops by molecularly engineering root traits desirable for efficient acquisition of nutrients from soil, transporters for uptake, redistribution and homeostasis of nutrients, and enzymes for efficient assimilation. Regulatory and transcription factors modulating these processes are also valuable in breeding crops with improved nutrient use efficiency and yield performance.
参考文献 | 相关文章 | 多维度评价
2. Wheat PROTON GRADIENT REGULATION 5 is Involved in Tolerance to Photoinhibition
WANG Yuan-ge, HE Xue, MA Wen-ying, ZHAO Xue-qiang, LI Bin , TONG Yi-ping
Journal of Integrative Agriculture    2014, 13 (6): 1206-1215.   DOI: 10.1016/S2095-3119(13)60604-8
摘要1975)      PDF    收藏
Wheat (Triticum aestivum L.) often experiences photoinhibition due to strong light during the grain filling stage. As such, increasing the tolerance of wheat to photoinhibition is very desirable in breeding efforts focused on increasing grain yields. Previous reports have suggested that PROTON GRADIENT REGULATION 5 (PGR5) plays a central role in the generation of a proton gradient across the thylakoid membrane (DpH) and in acclimation to high light intensity conditions. Three PGR5 homoeologues were isolated from wheat, and mapped onto chromosomes 7A, 7B and 7D, respectively. The TaPGR5s shared highly similar genomic sequences and gene structures. The transcripts of TaPGR5s were found to be abundantly expressed in the flag leaves, and were transiently up-regulated by treatment with high light. High light treatment inhibited the net photosynthetic rate (Pn) and the maximal quantum yield of photosystem II (Fv/Fm). Further, these inhibitions were more evident in the leaves with reduced expression of TaPGR5s achieved using virus-induced gene silencing methods. Moreover, reducing TaPGR5 expression impaired the induction of non-photochemical quenching (NPQ), which caused more severe cell membrane damage and lipid peroxidation in high light. Additionally, we observed that TaPGR5s transcripts were more abundantly expressed in the wheat genotypes with higher ms-delayed light emission (ms-DLE), a value reflecting transthylakoid DpH. These results suggested that TaPGR5s play important roles in the tolerance of wheat to photoinhibition.
参考文献 | 相关文章 | 多维度评价