期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Cell Production and Expansion in the Primary Root of Maize in Response to Low-Nitrogen Stress
GAO Kun, CHEN Fan-jun, YUAN Li-xing , MI Guo-hua
Journal of Integrative Agriculture    2014, 13 (11): 2508-2517.   DOI: 10.1016/S2095-3119(13)60523-7
摘要1461)      PDF    收藏
Maize plants respond to low-nitrogen stress by enhancing root elongation. The underlying physiological mechanism remains unknown. Seedlings of maize (Zea mays L., cv. Zhengdan 958) were grown in hydroponics with the control (4 mmol L-1) or low-nitrogen (40 μmol L-1) for 12 d, supplied as nitrate. Low nitrogen enhanced root elongation rate by 4.1-fold, accompanied by increases in cell production rate by 2.2-fold, maximal elemental elongation rate (by 2.5-fold), the length of elongation zone (by 1.5-fold), and final cell length by 1.8-fold. On low nitrogen, the higher cell production rate resulted from a higher cell division rate and in fact the number of dividing cells was reduced. Consequently, the residence time of a cell in the division zone tended to be shorter under low nitrogen. In addition, low nitrogen increased root diameter, an increase that occurred specifically in the cortex and was accompanied by an increase in cell number. It is concluded that roots elongates in response to low-nitrogen stress by accelerating cell production and expansion.
参考文献 | 相关文章 | 多维度评价
2. Genetic Improvement of Root Growth Contributes to Efficient Phosphorus Acquisition in maize (Zea mays L.)
ZHANG Yi-kai, CHEN Fan-jun, CHEN Xiao-chao, LONG Li-zhi, GAO Kun, YUAN Li-xing, ZHANG Fu-suo, MI Guo-hua
Journal of Integrative Agriculture    2013, 12 (6): 1098-1111.   DOI: 10.1016/S2095-3119(13)60329-9
摘要1519)      PDF    收藏
Maize plants adapt to low phosphorus (P) stress by increasing root growth. It is of importance to know the extent to which genetic improvement of root growth can enhance P acquisiton. In the present study, the contribution of root growth improvement to efficient P acquisition was evaluated in two soils using T149 and T222, a pair of near isogenic maize testcrosses which were derived from a backcross BC4F3 population. T149 and T222 showed no difference in shoot biomass and leaf area under normal growth conditions, but differed greatly in root growth. T149 had longer lateral roots and a larger root surface area compared to T222. In calcareous soil, when P was insufficient, i.e., when P was either supplied as KH2PO4 at a concentration of 50 mg P kg-1 soil, or in the form of Phy-P, Ca3-P or Ca10-P, a 43% increase in root length in T149 compared to T222 resulted in an increase in P uptake by 53%, and shoot biomass by 48%. In acid soil, however, when P supply was insufficient, i.e., when P was supplied as KH2PO4 at a concentration of 100 mg P kg-1 soil, or in the form of Phy-P, Fe-P or Al-P, a 32% increase in root length in T149 compared to T222 resulted in an increase in P uptake by only 12%, and shoot biomass by 7%. No significant differences in the exudation of organic acids and APase activity were found between the two genotypes. It is concluded that genetic improvement of root growth can efficiently increase P acquisition in calcareous soils. In acid soils, however, improvements in the physiological traits of roots, in addition to their size, seem to be required for efficient P acquisition.
参考文献 | 相关文章 | 多维度评价